Abstract:
The invention provides a catalyst composition, which includes an emulsion of an aqueous phase in an oil phase, wherein the aqueous phase comprises an aqueous solution containing a group 6 metal and a group 8, 9 or 10 metal. The metals can be provided in two separate emulsions, and these emulsions are well suited for treating hydrocarbon feedstocks.
Abstract:
There is provided an oxygen storage/release material using a rare earth oxysulfate or oxysulfide, which has a high oxygen storage/release capacity even at lower temperatures. The oxygen storage/release material of the present invention comprises a compound consisting of Pr2O2SO4 and/or Pr2O2S and at least one metal selected from the group consisting of Pt, Rh and Fe supported thereon.
Abstract translation:提供了使用稀土氧硫酸盐或氧硫化物的氧气储存/释放材料,即使在较低温度下也具有高的储氧/释放能力。 本发明的储氧/释放材料包括由Pr 2 O 2 SO 4和/或Pr 2 O 2 S组成的化合物和至少一种选自Pt,Rh和Fe所载的金属。
Abstract:
The present invention relates generally to ultradispersed catalyst compositions and methods for preparing such catalysts. In particular, the invention provides catalyst composition of the general formula: BxMyS[(1.1 to 4.6)y+(0.5 to 4)x] where B is a group VIIIB non-noble metal and M is a group VI B metal and 0.05≦y/x≦15.
Abstract translation:本发明一般涉及超分散催化剂组合物和制备这种催化剂的方法。 特别地,本发明提供了以下通式的催化剂组合物:BxMyS [(1.1-4.6)y +(0.5-4)x]其中B是ⅧB族非贵金属,M是ⅥB族金属,0.05& y / x≦̸ 15。
Abstract:
To provide a photocatalyst having high selectivity and carrying out a reductive reaction with light having a longer wavelength. A photocatalyst has a structure in which a semiconductor and a substrate are joined, in which the substrate causes a catalytic reaction by transfer to the substrate of excited electrons, which are generated by applying light to the semiconductor.
Abstract:
A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Rp)i(Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least at least a “d” block element metal; L is also at least a “d” block element metal, but different from M; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); R is optional and in one embodiment, R is a lanthanoid element metal; 0
Abstract:
An improved catalyst for hydrodemetallization of heavy crude oils and residua is disclosed. The catalyst is adopted for fixed bed hydroprocessing units. The invention is characterized for having a large pore diameter catalyst principally for hydrodemetallization of heavy oil and residue in a first reactor of a multi-reactor process. The catalyst has high demetallizing activity and high metal deposition capacity which results in good stability with time on stream (TOS). The hydrorefining catalyst is obtained by kneading a porous starting powder principally composed of gamma-alumina and having a pore capacity of 0.3-0.6 ml/g or larger and a mean pore diameter of 10 to 26 nm, extrudating and calcining, and after that supported with active metals component of elements belonging to groups VIIIB and VIB of the periodic table.
Abstract:
The present invention concerns a process for “ex situ” treatment of a hydrogenation catalyst containing nickel prior to use, consisting of carrying out three steps, namely bringing the catalyst into contact with at least one sulphur-containing compound or agent (the step termed selectivation), treating said catalyst with hydrogen at a temperature of more than 250° C. (the step termed reduction) and passivation of said catalyst.
Abstract:
Selective catalytic reduction with ammonia or a compound that decomposes to ammonia is a known method for the removal of nitrogen oxides from the exhaust gas of primarily lean-burn internal combustion engines. The vanadium-containing SCR catalysts that have long been generally used for this are characterized by a good conversion profile. However, the volatility of vanadium oxide can, at higher exhaust gas temperatures, lead to the emission of toxic vanadium compounds. Zeolite-based SCR catalysts, which are used in particular in discontinuous SCR systems, constitute a very cost-intensive solution for the problem.A method is proposed by which a homogeneous cerium-zirconium mixed oxide is activated for the SCR reaction in a defined manner by the introduction of sulphur and/or transition metal. Using this method, a highly active, ageing-resistant SCR catalyst is provided, which represents a vanadium-free, cost-effective and high-performance alternative to the existing SCR catalysts and is suitable in particular for use in motor vehicles.
Abstract:
A process and apparatus is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising iron oxide and alumina to form a heavy hydrocarbon slurry and hydrocracked to produce lighter hydrocarbons. The iron sulfide crystallites have diameters in the nanometer range.
Abstract:
The invention provides a catalyst composition, which includes an emulsion of an aqueous phase in an oil phase, wherein the aqueous phase comprises an aqueous solution containing a group 6 metal and a group 8, 9 or 10 metal. The metals can be provided in two separate emulsions, and these emulsions are well suited for treating hydrocarbon feedstocks.