Abstract:
A process for making diamond and diamond products includes the steps of implanting ions in a diamond substrate to form a damaged layer of non-diamond carbon below the top surface of the substrate, heating the substrate to about 600-1200.degree. C., growing diamond on the top surface of the heated substrate by chemical vapor deposition, and electrochemically etching the damaged layer to separate the grown diamond from the substrate along the damage layer. The diamond product consists of a first diamond layer and a second diamond layer attached to the first layer. The second layer contains damage caused by ions traversing the second layer.
Abstract:
A method and apparatus for generating plasmas adapted for chemical vapor deposition, etching and other operations, and in particular to the deposition of large-area diamond films, wherein a chamber defined by sidewalls surrounding a longitudinal axis is encircled by an axially-extending array of current-carrying conductors that are substantially transverse to the longitudinal axis of the chamber, and a gaseous material is provided in the chamber. A high-frequency current is produced in the conductors to magnetically induce ionization of the gaseous material in the chamber and form a plasma sheath that surrounds and extends along the longitudinal axis and conforms to the sidewalls of the chamber. A work surface extending in the direction of the longitudinal axis of the chamber is positioned adjacent a sidewall, exposed to the plasma sheath and treated by the plasma. Preferably, the ratio of the width to the height of the chamber is 10:1 or larger so that the chamber includes a large area planar surface adjacent the plasma sheath and adjacent to which a large area substrate or a plurality of substrates is arranged, whereby large area treatment, such as diamond deposition, can be performed.
Abstract:
A process for preparing amorphous ultrahard material based on boron nitride which has a hardness sufficient to scratch diamond uses hexagonal or turbostratic boron nitride hBN as starting material. The starting material is compressed at pressures of at least 70 Kbar and heated to temperatures of at least of 1650.degree. C. until a boron nitride melt is obtained, the boron nitride melt is quenched by shutting off the heat supply and the quenched boron nitride melt is then relieved of the pressure. In the process, the hexagonal or turbostratic boron nitride employed as a starting material is treated in the presence of crystallisation inhibitors so that the formation of crystals is completely prevented and an amorphous structure is compacted by incorporation of reaction products comprising boron suboxides.
Abstract:
The purity and toughness of a batch of diamond grains is increased by separating a portion containing undesirable inclusions form a remaining higher purity portion and annealing the higher purity portion in a reducing atmosphere for a sufficient period of time to enhance the toughness of the higher purity portion.
Abstract:
Metal carbide supported polycrystalline diamond (PCD) compacts having improved shear strength and impact resistance properties, and a method for making the same under high temperature/high pressure (HT/HP) processing conditions. A sintered polycrystalline cubic boron nitrite (PCBN) compact interlayer is provided to be bonded at a first interface to a sintered PCD compact layer, and at a second interface to a cemented metal carbide support layer comprising particles of a metal carbide in a binder metal. The supported compact is characterized as having a substantially uniform sweep through of the binder metal from the cemented metal carbide support layer, which sweep through bonds the sintered PCD compact layer to the sintered PCBN interlayer, and the sintered PCBN interlayer to the cemented metal carbide support layer.
Abstract:
The invention provides a method of making an abrasive compact using conventional compact synthesis conditions. The method is characterized by the use of an ultra-hard abrasive particle mass comprising at least 25 percent by mass of ultra-hard abrasive particles having an average particle size in the range 10 to 100 microns, and consisting of particles having at least three different average particle sizes, and at least 4 percent by mass of ultra-hard abrasive particles having an average particle size of less than 10 microns. The abrasive compact is preferably a diamond compact.
Abstract:
Porous and non-porous compositions include diamond particles, non-diamond particles, or mixtures of particles consolidated with polycrystalline diamond. The composite compositions of the present invention may be formed by a process which includes the steps of preforming the particles into a preform having a desired shape, and consolidating the preform with polycrystalline diamond. The polycrystalline diamond is preferably formed using CVD techniques including application of sufficient microwave energy to maintain the preform at a temperature of between about 670.degree. and 850.degree. C. The preform may be rotated during a portion of the deposition process.
Abstract:
A synthetic diamond or cubic boron nitride particle is characterized by containing two or more stable isotopes of an element present in a ratio which is different to the ratio in which the isotopes exist in nature. The diamond or cubic boron nitride particle thus has a fingerprint. A preferred example of the element is nitrogen.
Abstract:
The present invention is directed to the production of single-crystal diamond consisting of isotopically pure carbon-12 or carbon-13. The product is believed to be like that diamond product in application Ser. No. 448,469, but is made by a different method. In the present invention, isotopically pure single-crystal diamond is grown on a single crystal substrate directly from isotopically pure carbon-12 or carbon-13. One method for forming isotopically pure single-crystal diamond comprises the steps of placing in a reaction chamber a single crystal substrate heated to an elevated CVD diamond-forming temperature. A gaseous mixture of hydrogen and a hydrocarbon of isotopically pure carbon-12 or carbon-13 is provided in the chamber. The gaseous mixture then is at least partially decomposed in the chamber to form an isotopically-pure single crystal diamond layer on the single crystal substrate disposed therein. The thus-formed isotopically-pure single crystal diamond layer optionally may be removed from the single crystal substrate. Another method for forming isotopically-pure single-crystal diamond comprises diffusing isotopically-pure carbon-12 or carbon-13 through a metallic catalyst/solvent under high pressure to a region containing a single crystal substrate to form an isotopically-pure single-crystal diamond layer on said single crystal substrate. The single crystal substrate is stable under the high pressure and elevated temperatures used during the diffusion process. The single crystal substrates optionally may be diamond, including the isotopically-pure single-crystal diamond films formed by the inventive method disclosed herein, thus forming multi-layered diamond structures.
Abstract:
Fastening devices such as washers, seals and drive pins subject to corrosive deterioration of all or select portions thereof wherein all or such select portions are protected from such corrosion and failure by a thin coating or coatings of hard surface material or materials. In a preferred form, the fastening device is coated with a synthetic diamond material formed as a thin layer in situ thereon. In addition to preventing moisture and other corrosive material from penetrating to the base metal, such synthetic diamond material serves to preserve the surface integrity of the fastening device preventing the formation or spread of surface flaws produced during use or during the fabrication of the fastening device.