Abstract:
A color calibration job identification system and method are provided, wherein the job identification data is encoded on a printed page, in a patch code, along with color targets, according to a protocol and format approximately identical to a format of the color targets. The patch code comprises a first portion, including a start code, and a second portion, including job identification data. The first portion of the patch code is comprised of two or more small color patches, each having a predefined color. The second portion of the patch code is comprised of two or more small color patches wherein each of the patches is comprised of a color selected from a plurality of colors, wherein each of the colors is indicative of a unique datum value, preferably an octal digit. The system provides a means for determining correct functioning of a printer and a means for determining an orientation of a printed page in a scanning device.
Abstract:
A method and apparatus for determining the condition of a test subject based on color uses a color measuring instrument to detect change in a color factor indicative of a condition such as a disease, spoilage, ageing, etc. A medical condition such as bilirubinemia that affects skin color can be detected. One measures color factors such as Hunter b and L in the subjects' skin color. For predetermined ranges of one color factor, in particular L, changes in the other color factor, e.g. Hunter b, above predetermined levels are indicative of the medical condition. In many cases, a single measurement of the color factors can be utilized as a warning of the likelihood of the medical or contaminated condition, if the ordinary range of the color factor is known for healthy individuals with skin coloration like that of the test subject. Even if there has been no baseline measurement and the test subject's color is such that a single reading of one or two color factors will not warn of the possible presence of the medical condition or contamination, sequential readings can indicate the presence or absence of the condition based upon changes in the measured color factor, or lack of changes. The color measuring techniques apply to a wide range of biological test subjects (e.g. hair, teeth, tissue, excretions, foods, soil, animals, plants). Methods and apparatus for determining accurate hair color classifications and appropriate coloring agents to bring about a selected change of color include a table of hair color classifications, a color measuring instrument to arrive at Hunter L, a and b for use in identifying a particular classification from the table and a database that identifies appropriate coloring agents based on a selection of coloring actions from a menu and the classifications of hair color.
Abstract:
A method and apparatus for determining the condition of a test subject based on color uses a color measuring instrument to detect change in a color factor indicative of a condition such as a disease, spoilage, ageing, etc. A medical condition such as bilirubinemia that affects skin color can be detected. One measures color factors such as Hunter b and L in the subjects' skin color. For predetermined ranges of one color factor, in particular L, changes in the other color factor, e.g. Hunter b, above predetermined levels are indicative of the medical condition. In many cases, a single measurement of the color factors can be utilized as a warning of the likelihood of the medical or contaminated condition, if the ordinary range of the color factor is known for healthy individuals with skin coloration like that of the test subject. Even if there has been no baseline measurement and the test subject's color is such that a single reading of one or two color factors will not warn of the possible presence of the medical condition or contamination, sequential readings can indicate the presence or absence of the condition based upon changes in the measured color factor, or lack of changes. The color measuring techniques apply to a wide range of biological test subjects (e.g. hair, teeth, tissue, excretions, foods, soil, animals, plants).
Abstract:
Methods and apparatus for determining accurate hair color classificatinos and appropriate coloring agents to bring about a selected change of color include a table of hair color classifications, a color measuring instrument to arrive at Hunter L, a and b values for use in identifying a particular classification from the table and a database that identifies appropriate coloring agents based on a selection of coloring actions from a menu and the classifications of hair color.
Abstract:
Personal colors for cosmetics are determined by a method and a kit of equipment which determines an overall value for an individual by reference to the skin, eye, and hair features, determines a four-seasonal color designation of the individual by reference to colors such as powders applied to the skin, and presents the personal colors based on the overall value and seasonal color designation. A value determining scale is used to determine specific values of features by adjacent comparison to those features. An overall value chart contains information defining an overall value based on a predetermined multiple number of specific values of features. A seasonal color designation chart contains information defining a seasonal color designation as either summer, winter, spring, or autumn based on the relative ability of predetermined colors to blend with natural skin tone. A personal color direction chart correlates the overall value and seasonal color designation to personal colors.
Abstract:
The present invention provides a method and apparatus for accurately matching colors. The color matching system includes a host computer and a color input device in communication with the host computer. Preferably the color input device is capable of obtaining spectral data, such as that obtained using a spectrophotometer. The host computer includes a color library, a color management system, a monitor, and a user interface. In one aspect of the invention, the user selects a target color, a color library to use for matching, a color distance tolerance, and a light source under which the colors are to be matched. The target color is compared to the colors in the library and the color or colors in the library that are within the specified color tolerance are reported. In a second aspect of the invention, the user selects a color and two illuminants. The color under each of the two illuminants is compared and the color distance between the two is reported. In a third aspect of the invention, a selected color is transformed to the color space of a designated printer and then back-transformed to the color space of the monitor and displayed. The displayed color represents a simulation of the selected color as it would appear if printed.
Abstract:
Apparatus for acquiring both color and glossiness of a sample such as a painted material in order to inspect the quality of their color and glossiness by comparing them with those of another sample. The apparatus mainly consists of a standard light source, chroma sensing means, glossiness sensing means, decision data storing means storing various color and glossiness data together with a computer program, and a CPU for the comparison of data. The apparatus can be used for color reproduction in the automobile industry.
Abstract:
A simple color distinguishing card set is composed of certain mixed color cards and a primary color arrangement card. Each of these mixed color cards is provided with a primary color spot, a plurality of mixed color spots, and a plurality of transparent spots groups or holes groups. The primary color card is provided with a plurality of primary color congregation areas. A specific mixed color may be easily found by means of packing together some or all of these mixed color cards. Reversely, specific primary colors may be obtained by means of placing the respective mixed color card over the primary color arrangement card.
Abstract:
A color value classification system particularly suited for use in printing procedures based upon the cyan, magenta and yellow primary colors, including both traditional and digital color separation methods, as well as all types of other printing systems. The classification is based upon four groups of five colors each, in which half of the colors are the substan- tial complements of the remaining half. The twenty colors are derived from the blending of the basic primary colors known as process colors in the printing industry.
Abstract:
In order to overcome difficulties which arise when making conventional color charts and color spaces, a torus-shaped spacial structure is used as base body for the arrangement of color tones.The gray tones are located at the outermost jacket area thereof and the clearest colors are located at the inner jacket area thereof. In the inside of the body, the colors extend through all color tone steps from the clearest up to the gray tones. By means of an iterative method for the arranging of color tones in the torus, it is possible not only to discriminate the color tones for the human eye equidistantly, but also to represent the brown colors reliably.