Abstract:
An illumination device comprises one or more emitter modules having improved thermal and electrical characteristics. According to one embodiment, each emitter module comprises a plurality of light emitting diodes (LEDs) configured for producing illumination for the illumination device, one or more photodetectors configured for detecting the illumination produced by the plurality of LEDs, a substrate upon which the plurality of LEDs and the one or more photodetectors are mounted, wherein the substrate is configured to provide a relatively high thermal impedance in the lateral direction, and a relatively low thermal impedance in the vertical direction, and a primary optics structure coupled to the substrate for encapsulating the plurality of LEDs and the one or more photodetectors within the primary optics structure.
Abstract:
Disclosed are an apparatus, a system, and a control method for measuring an LED panel. The method for measuring an LED panel comprises the steps of: capturing an image of an LED panel displayed in a preset color; classifying each pixel of the LED panel from the captured image of the LED panel into pixel regions having different sizes according to a predetermined threshold brightness value; obtaining a tristimulus value of each pixel by using the data of the classified pixel regions and a trained artificial intelligence model; and obtaining the luminance and chrominance of each pixel on the basis of the obtained tristimulus value.
Abstract:
An object is to quantify the texture such as irregularity and gloss of a metal surface. Centers of Lab chromaticity distributions are identified (S145), and one of the Lab chromaticity distribution is entirely shifted (mapped) by deviations ΔA, ΔB and ΔL of a central coordinate, such that one of central coordinates of two distributions U1(L,a,b) and U2(L,a,b) matches with the other central coordinate (S146). A texture spread index that indicates a difference in spatial spread is then computed (S147). This configuration computes the spatial spread of the Lab chromaticity distribution in a three-dimensional space, and quantifies the irregularity of an inspection plane by diffraction phenomenon of illumination light. The difference in spread other than the color is applicable to evaluation of the irregularity of the metal surface or the like.
Abstract:
Systems and methods for measuring spectra and other optical characteristics such as colors, translucence, gloss, and other characteristics of objects and materials such as skin. Instruments and methods for measuring spectra and other optical characteristics of skin or other translucent or opaque objects utilize an abridged spectrophotometer and improved calibration/normalization methods. Improved linearization methods also are provided, as are improved classifier-based algorithms. User control is provided via a graphical user interface. Product or product formulations to match the measured skin or other object or to transform the skin or other object are provided to lighten, darken, make more uniform and the like.
Abstract:
In a colorimetry device and a colorimetry method of the present invention, reference chart definition information including at least reference chart identification information about a reference color chart and patch position definition information indicating a position of each of plurality of patches in the reference color chart is stored, and whether the obtained color chart is matched with the reference color chart is determined based on the reference chart identification information. When the obtained color chart is determined to be matched with the reference color chart, a position of a colorimetry unit with respect to the color chart is relatively moved to the position of each of the plurality of patches in the color chart based on the reference chart definition information, and the colorimetry unit measures the color of each of the plurality of patches.
Abstract:
In a direct stimulus value reading type colorimetric photometer, first, second, and third colorimetric optical systems have spectral responsivities approximate to first, second, and third parts of the color matching function, respectively. A deriving unit derives a colorimetric value corresponding to a case in which the color matching function is selected as an evaluation function for colorimetry and a photometric value corresponding to a case in which the spectral luminous efficiency is selected as an evaluation function for photometry (i.e. “CASE”) from three signals. The spectral luminous efficiency is not consistent with any one of the first, second, and third parts. A fourth colorimetric optical system may have spectral responsivity approximate to the spectral luminous efficiency, and the deriving unit may derive the colorimetric value corresponding to the CASE from a fourth signal.
Abstract:
A color identifying system, a color identifying method and a display device are provided. The color identifying system comprises an image acquiring unit, a color analyzing unit and an information output unit; the image acquiring unit is configured to acquire an image of an object to be identified; the color analyzing unit is configured to extract profiles of the pattern regions of the object to be identified, and analyze colors of the pattern regions, to determine overall color information of the object to be identified; and the information output unit is configured to output the overall color information of the object to be identified. The color identifying system can help a color vision defective person to identify color of an object, which is greatly convenient to production and life of the color vision defective person, and thus significantly improving quality of life of the color vision defective person.
Abstract:
[Problem] To provide a technique for calculating the psychophysical value of a color corresponding to an arbitrarily defined tone by modeling a tone concept defined in the PCCS (Practical Color Co-ordinate System).[Solution] A method for, regarding multiple types of tones defined in the PCCS, generating a definitional equation for each saturation to which each of the tones belongs, wherein a computer acquires the Munsell values of colors belonging to respective multiple tones belonging to the same saturation among the multiple types of tones defined in the PCCS, the computer stores the acquired multiple Munsell values in a predetermined storage device, the computer converts each of the multiple Munsell values stored in the storage device into a value in a predetermined color space composed of two axes of values representing lightness and values representing vividness, and the computer performs a predetermined regression calculation on a point group projected to the predetermined color space to find a regression equation passing through the origin of the predetermined color space.
Abstract:
A color measurement apparatus measures a color distribution of an object that includes a first substance and a second substance. The color measurement apparatus comprises an imager that captures an image of the object, the image being two dimensional and the image includes a first color feature of the first substance and a second color feature of the second substance. Furthermore, the color measurement apparatus comprises a calculator that calculates distribution information of the first substance and the second substance based on the image.
Abstract:
A method and system for accurate and precise representation of color for still and moving images, particularly sequences of digitized color images. Spectral and/or extended dynamic range information is retained as images are captured, processed, and presented during color adjustment. Using this extra spectral information, various methodologies for further presenting or processing the color within these images can be optimized. Presentation-device independence is achieved not by attempting to discover a device-independent intermediate representation, but rather by deferring the binding and mapping of color representation onto a presentation device until its actual use.