Abstract:
In an abnormal shadow detecting system, a characteristic value on the shape and/or the density of a prospective area of a micro calcification shadow set in an image of an object is extracted on the basis of image data representing the image of the object, and whether a micro calcification shadow really exists in the prospective area is determined on the basis of the calculated characteristic value.
Abstract:
The present system and method for simulating particles and waves is useful for calculations involving nuclear and full spectrum radiation transport, quantum particle transport, plasma transport and charged particle transport. The invention provides a mechanism for creating accurate invariants for embedding in general three-dimensional problems and describes means by which a series of simple single collision interaction finite elements can be extended to formulate a complex multi-collision finite element.
Abstract:
An x-ray metrology system includes an e-beam generator to cause a test sample to emit x-rays, x-ray optics for focusing the x-rays, and an x-ray imager to generate an image of the test sample from the focused x-rays. Because the x-ray imager provides a direct representation of the x-ray emission characteristics of the test sample, the resolution of a measurement taken using such a sensor is limited only by the resolution of the sensor (and any focusing optics), rather than by the amount of e-beam spread in the thin film. The x-ray imaging can be performed for object planes at the test sample that are not parallel to the test sample, thereby allowing vertical dimension data to be accurately generated by the x-ray imaging system.
Abstract:
A snapshot backscatter radiography (SBR) system and related method includes at least one penetrating radiation source, and at least one substantially transmissive radiation detector. The substantially transmissive radiation detector is interposed between an object region to be interrogated and the radiation source. The substantially transmissive radiation detector receives and detects forward radiation from the radiation source before transmitting a portion thereof to interrogate the object region, wherein a portion of backscattered radiation provided by the object region is detected by the detector. A changeable collimating grid having a plurality of spaced apart radiation absorbing features is coupled to structure changing a position of the plurality of features and is disposed in at least one of the path of the forward radiation and the path of the backscattered radiation. An image of the object can be obtained by subtracting the forward radiation detected at the detector, or an estimate thereof, from a total of all radiation detected by the detector. Integrated circuit inspection, land mine detection, and luggage or cargo screening systems can all be SBR based.
Abstract:
A non-uniform density sample analyzing method for analyzing a distribution state of particle-like matter in a non-uniform density sample, where an actually measured X-ray scattering curve is an in-plane X-ray scattering curve obtained by in-plane diffraction measurement, and fitting between the in-plane X-ray scattering curve and the simulated X-ray scattering curve is performed. The value of the fitting parameter when the simulated X-ray scattering curve agrees with the in-plane X-ray scattering curve serves to indicate the in-plane direction distribution sate of the particle-like matter in the non-uniform density sample. This method can analyze the in-plane direction distribution state of the particle-like matter in the anisotropic non-uniform density sample easily and accurately. Its device and system are also disclosed.
Abstract:
The present invention pertains to a method and an apparatus to generate a density image of an object using fan or cone beams of radiation and collimated detectors on one side of the object. The method consists of irradiating an object with a plurality of pairs of non-parallel radiation beams wherein the beams in each pair intersect a same segment along the axis of the detector. Compton-scattering radiation from the beams are then measured, and corrected attenuation coefficients along each beam are obtained. This latter step is effected by taking a first ratio of detector measurements for the beams in each pair; comparing the first ratio with a second ratio of corresponding calculated detector measurements and balancing discrepancies between the first and second ratios in a forward-inverse numerical analysis algorithm. Taking ratios of attenuation coefficients along related incident beams eliminates non-linearity problems whereby the aforesaid algorithm can be solved.
Abstract:
Disclosed herein is a method of evaluating the performance of an ion-exchange film. In the method, small-angle scattering curves for the ion-exchange film are obtained by an X-ray measuring apparatus that can detect X-rays scattered at small angles with respect to the axis of an X-ray applied to film. From the positions of the peaks on the small-angle scattering curves and the X-ray intensities at these peaks, the molecular structure of the ion-exchange film is determined, thereby to evaluate the performance of the ion-exchange film.
Abstract:
Provided are an analyzing apparatus and an analyzing method for analyzing a sample by performing measurements using X-rays and measuring a gas generated from the sample.
Abstract:
The invention relates to a method for determining a gsm substance and/or a chemical composition of a conveyed material sample. From the analysis of a portion of an incident ionizing radiation, in particular an X-radiation, scattered from a material sample, a detector signal corresponding to the gsm substance and/or the chemical composition of the material sample is generated and used for determining the gsm substance and/or the chemical composition of the material sample. A device for determining a gsm substance and/or a chemical composition of a material sample has a compact measurement head (10) arranged unilaterally with respect to the material sample. This measurement head includes an X-radiation source (20) and a detector arrangement (30) integrated into the measurement head of at least one X-ray detector connected to a voltage supply and an evaluation unit.
Abstract:
Apparatus for inspection of a sample includes a radiation source and an array of detector elements arranged to receive radiation from the surface due to irradiation of an area of the surface by the radiation source. The array has a first operative configuration for resolving the received radiation along a first axis perpendicular to the surface, and a second operative configuration for resolving the received radiation along a second axis parallel to the surface. A signal processor processes the signal from the detector array in the two configurations so as to determine a reflectance of the surface as a function of elevation angle relative to the surface and a scattering profile of the surface as a function of azimuthal angle in a plane of the surface.