Abstract:
A method for producing fine particles of barium ferrite, which comprises reacting an aqueous solution comprising an iron compound, a barium compound and an alkaline substance, wherein the molar ratio of hydroxyl groups of the alkaline substance to the total of anions of the iron compound and the barium compound in the aqueous solution is from 1 to 4, and the reaction is carried out at a temperature of at least 250.degree. C. under a pressure of at least 200 kg/cm.sup.2 using a flow type reactor.
Abstract translation:一种钡铁氧体微粒的制造方法,其特征在于,使含有铁化合物,钡化合物和碱性物质的水溶液与碱性物质的羟基与铁化合物的阴离子的总量的摩尔比和 水溶液中的钡化合物为1至4,并且使用流式反应器在至少200kg / cm 2的压力下在至少250℃的温度下进行反应。
Abstract:
The method of separating impurities from an aqueous solution by means of rotating tile aqueous solution at high speeds until a high pressure and a high temperature is reached. At that time the impurities are separated from the solution. The aqueous solution is kept at high temperatures and pressures until the impurities are separated from the liquid. Preferably, a device providing a centrifugal force, such as a centrifuge, is used to achieve the high temperatures and pressures which should preferably be no lower than 705.4.degree. F. and 3,208 psi, respectively.
Abstract:
A reactor tube for supercritical water oxidation is designed to supply a thin, continuous layer of water along the inner surface of the reaction zone by a wall lining formed of laminated platelets individually etched and superimposed to form an array of engineered fluid passages through the wall. Each passage includes a flow metering channel of closely controlled configuration to impose a preselected level of resistance to water flowing through it, plus a distribution section which distributes the water emerging from the flow metering channel over the length of a slot-shaped exit port. The exit port is arranged in conjunction with neighboring exit ports in an array over the inner surface of the reactor such that the emerging water forms a continuous film over the surface, thereby protecting the surface from corrosion and salts deposition from the supercritical reaction medium.
Abstract:
A system for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary.
Abstract:
A method and apparatus for delivering supercritical fluids uses one or two high pressure vessels. Each vessel is cooled below the critical temperature of the fluid while the vessel is being filled. The inlet is then closed and the vessel is heated to attain a predetermined pressure. The outlet of the vessel is then opened and supercritical fluid flows from the vessel for use in various processes such as extraction or chromatography. As the fluid flows from the high pressure vessel, the pressure is controlled by adjusting the temperature of the high pressure vessel. Usually, the temperature of the vessel will be increased as the supercritical fluid exits from the vessel. When two high pressure vessels are used, the vessels can be refilled on an alternating basis so that a continuous supply of supercritical fluid can be made available as long as it is required. The high pressure vessels can be two pieces of stainless steel tubing. The system is essentially maintenance free as there are virtually no moving parts. With previous delivery systems for high pressure fluids, high pressure pumps are used. These pumps are relatively expensive and can be subject to problems such as noise and leakage.
Abstract:
A system for treating articles, preferably with a sterilizing, gas is disclosed. The system includes a chamber into which the articles are received and valves for supplying the sterilizing gas to the chamber and for removing the gas from the chamber after a predetermined time period. The sterilizing gas is generated on site from at least two components, thus minimizing problems in the transportation of the gas to the location. The sterilizing gas generated on site is preferably chlorine dioxide and the two components may be chlorine gas and sodium chlorite. The system includes a programmed microprocessor controller for controlling the valves executing a predetermined sequence of instructions. The predetermined sequence of instructions define a state diagram for the system having a plurality of successive states. In order to provide for system safety, the controller preferably employs a plurality of abort states to which the system returns in the event of a failure. Depending on the nature of the failure, the system automatically moves to the proper abort state.
Abstract:
A continuously flowing fluid is processed by being fed to the top of a hydraulic downdraft column (17) which is of a height such that the pressure at the bottom thereof will approximately be at the pressure necessary to create supercritical water conditions. The fluid is conducted to the bottom of the column (17) and received in a reaction chamber (21) in which the majority of the fluid is recirculated around an annular baffle plate (24). The material in the reaction chamber (21) is heated to a temperature above that necessary to create supercritical water conditions by an independent reaction taking place in a heating chamber (32). The result is that the fluid will undergo chemical reactions at the supercritical temperature and pressure range and will be of a lower specific gravity than the unprocessed fluid. The material not being recirculated in the chamber (21) is fed to one of two updraft columns (30, 31), a start-up column (30) used to preheat the material in the downdraft column (17) during initiation of the process, and a second column ( 31) isolated from the downdraft column (17) so as not to transmit any heat thereto during normal operation of the process. The temperature of the fluid in the downdraft column (17) is thereby controlled to prevent decomposition of the material until the fluid enters the reaction chamber (21) at which time it is abruptly brought up to the supercritical water temperature.
Abstract:
Apparatus for sterilizing laboratory and hospital glassware, liquids, instruments, garments and the like comprising a sterilizer enclosure having a steam jacket surrounding the same, a source of steam and means, connected in parallel, to supply steam to said jacket at one of two predetermined pressures, means for interconnecting said jacket and said interior of said sterilizer, and means responsive to a predetermined temperature setting for the interior of the sterilizer to selectively initiate and discontinue the supply of steam to said jacket in response to the temperature in said sterilizer. A process for sterilizing laboratory and hospital glassware, liquids, instruments, garments and the like comprising the steps of inserting the materials to be sterilized in a closed, sealed, jacketed sterilizer, introducing steam into the jacket of said sterilizer to preheat said jacket, interconnecting said jacket and the interior of said sterilizer initially to displace any air within said sterilizer; continuing to interconnect the jacket and the interior of said sterilizer; providing the jacket wth steam at one of two different predetermined pressures; sensing the temperature within said sterilizer and introducing steam into said jacket at said higher pressure in response to said temperature sensitive means to maintain a variable, predetermined temperature within said sterilizer.
Abstract:
A method of and a system for processing a slurry containing organic components, such as biomass, having a water contents of at least 50%, comprises a pump and heater or heat exchanger to bring the liquid in the slurry in a supercritical state. A reactor converts at least a part of the organic components in the slurry. A separator removes gaseous products from the converted slurry. A mixer adds fluid from the converted slurry to the slurry upstream from the reactor.