Abstract:
A method of managing a power demand to assure the operation of a pilotless aircraft. The aircraft includes an internal combustion engine supplying a maximum principal power which can vary. The management method is particularly suitable for a rotary wing pilotless aircraft. It guarantees the storage of an amount of electrical energy at least equal to a recovery energy of the aircraft in the event of failure of the internal combustion engine. This recovery energy enables the control of autorotation and landing of the aircraft.
Abstract:
The present invention provides methods and apparatus for unmanned aerial vehicles (UAVs) with improved reliability. According to one aspect of the invention, interference experienced by onboard sensors from onboard electrical components is reduced. According to another aspect of the invention, user-configuration or assembly of electrical components is minimized to reduce user errors.
Abstract:
A vehicle-based airborne wind turbine system having an aerial wing, a plurality of rotors each having a plurality of rotatable blades positioned on the aerial wing, an electrically conductive tether secured to the aerial wing and secured to a ground station positioned on a vehicle, wherein the aerial wing is adapted to receive electrical power from the vehicle that is delivered to the aerial wing through the electrically conductive tether; wherein the aerial wing is adapted to operate in a flying mode to harness wind energy to provide a first pulling force through the tether to pull the vehicle; and wherein the aerial wing is also adapted to operate in a powered flying mode wherein the rotors may be powered so that the turbine blades serve as thrust-generating propellers to provide a second pulling force through the tether to pull the vehicle.
Abstract:
A method for constructing air-observed terrain data by using a rotary wing structure includes setting flight information including a photographing starting location and a photographing ending location on the basis of a flight route and a photographing location of the rotary wing structure; transmitting, to the rotary wing structure, the flight information so as to store the flight information in a flight control unit; capturing a ground image by a photographing unit of the rotary wing structure and storing the ground image in a storage unit when the rotary wing structure arrives at the photographing location; ending photographing and returning to the ground when the rotary wing structure arrives at the photographing ending location while repeatedly capturing a ground image; and constructing, by a computer in the control center, terrain data by using ground images stored in the storage unit.
Abstract:
An aerial vehicle including self-autonomous deployable arms and methods of deploying the vehicle are disclosed. The arms may include patterns located thereon that allow the arms to transition between wrapped, flat, and deployed configurations autonomously without the need for direct intervention by a user.
Abstract:
Unmanned aerial vehicles and methods for providing the same are disclosed. The unmanned aerial vehicles may have various configurations related to a support frame. The unmanned aerial vehicles may have various configurations with a continuous track for ground propulsion. The unmanned aerial vehicles may have various configurations related to payload clamps.
Abstract:
The present invention provides methods and apparatus for unmanned aerial vehicles (UAVs) with improved reliability. According to one aspect of the invention, interference experienced by onboard sensors from onboard electrical components is reduced. According to another aspect of the invention, user-configuration or assembly of electrical components is minimized to reduce user errors.
Abstract:
A method of docking and recharging using a base station and a station-mating frame on the multicopter. The base station includes an upward-facing camera that is used by a docking controller to detect the presence, position, and orientation of a frame, with infrared light-emitting diodes arranged in a predefined pattern. The controller of the base station acts to emit wireless signals to the multicopter to guide the multicopter with its station-mating frame to a predefined position above the base station. The controller transmits a wireless signal to the multicopter to reduce thrust, and the multicopter lowers itself onto a sloped receiving surface that may be arranged in a crown pattern to provide passive gravity-driven centering, which causes the station-mating frame to slide to a lowest vertical point of the receiving assembly. A locking mechanism engages to lock the frame in place and provide electrical contact for recharging.
Abstract:
A method for controlling a path of a rotary-wing drone wherein said method comprises: Establishing a first-order temporal relation between flight control parameters and flight dynamics for said rotary-wing drone comprising: An Explicit Discrete Time-Variant State-Space Representation of a translation control of said rotary-wing drone; An Explicit Discrete Time-Variant State-Space Representation of a course control of said rotary-wing drone; Controlling the path of said rotary-wing drone by: Estimating a course of said rotary-wing drone on the basis of said Explicit Discrete Time-Variant State-Space Representation of a course control of said rotary-wing drone; Estimating a position of said rotary-wing drone on the basis of said Explicit Discrete Time-Variant State-Space Representation of a translation control of said rotary-wing drone; said steps of estimating being performed independently.
Abstract:
Methods and systems are described for new paradigms for user interaction with an unmanned aerial vehicle (referred to as a flying digital assistant or FDA) using a portable multifunction device (PMD) such as smart phone. In some embodiments, a magic wand user interaction paradigm is described for intuitive control of an FDA using a PMD. In other embodiments, methods for scripting a shot are described.