Abstract:
The invention is directed toward a UAV having a plurality of rotors position on axles extending longitudinally from a fuselage. The axles articulate the rotors from a vertical position, where the rotors provide lift, to a horizontal position, where the rotors provide thrust. The UAV is configured such that the voltage provided to each rotor may be varied to adjust rotor speed, and thus thrust, independently, giving the UAV enhanced maneuverability.
Abstract:
An apparatus and method for controlling a yaw moment of a flight vehicle, such as an aircraft. A wing structure of the flight vehicle has a first opening or actuator positioned by a first apex section of a first side of the wing, and has a second opening or actuator positioned away from or at a distance from a second apex section of a second side of the wing. The first side and the second side can each be positioned or located opposite a centerline of the wing or wing structure. A pressure source or other pressure supply device is in communication with the first opening or actuator and the second opening or actuator to which a pressurized fluid, such as air, is controlled and delivered to control or vary the yaw moment of the flight vehicle.
Abstract:
An embodiment of an unmanned aerial vehicle, which may be connected to a lighter-than-air carrier, may have a ratio of a lifting force of the carrier to a weight of the vehicle from 1.1:1 to 3:1. The vehicle, excluding payload, may have a mass of from 30 kg to 150 kg. The vehicle may have a wingspan of from 20 m to 60 m.
Abstract:
A propeller includes a hub coaxially surrounding a longitudinal axis. A ring shroud coaxially surrounds the longitudinal axis and is spaced radially from the hub. The ring shroud includes an inner ring surface and a radially spaced, oppositely facing outer ring surface. At least one propeller blade is fixedly attached to both the hub and the inner ring surface and extends radially therebetween for mutual rotation therewith. At least one extending blade has a first extending blade end radially spaced from a second extending blade end. The first extending blade end is fixedly attached to the outer ring surface. The second extending blade end is cantilevered from the first extending blade end and is radially spaced from the ring shroud.
Abstract:
A site management system includes an unmanned airplane being switchable between an airplane mode for high speed flight and a VTOL mode for low speed flight, a working vehicle working in a civil construction site, a shape detection sensor provided in the unmanned airplane to detect a shape of the civil construction site, and an external control apparatus that controls flight of the unmanned airplane, driving of the working vehicle, and driving of the shape detection sensor. The external control apparatus moves the unmanned airplane to an observation area by performing the high speed flight. Further, the external control apparatus detects a shape of the observation area by driving the shape detection sensor while performing the high speed flight or by driving the shape detection sensor while performing low speed flight by switching from the airplane mode to the VTOL mode.
Abstract:
An aircraft is provided and includes a fuselage, first and second wings extending outwardly from opposite sides of the fuselage, proprotors operably disposed on each of the first and second wings to drive vertical take-off and landing aircraft operations and horizontal flight aircraft operations and a refueling system including at least one fuel tank disposed in at least one or more of the fuselage, the first wing or the second wing and a refueling apparatus. The refueling apparatus is coupled to the at least one fuel tank such that fuel is movable with respect to the at least one fuel tank during aircraft ground and aerial operations.
Abstract:
Electric aircraft, including in-flight rechargeable electric aircraft, and methods of operating electric aircraft, including methods for recharging electric aircraft in-flight, through the use of unmanned aerial vehicle (UAV) packs flying independent of and in proximity to the electric aircraft.
Abstract:
The invention is directed toward a UAV having a plurality of rotors position on axles extending longitudinally from a fuselage. The axles articulate the rotors from a vertical position, where the rotors provide lift, to a horizontal position, where the rotors provide thrust. The UAV is configured such that the voltage provided to each rotor may be varied to adjust rotor speed, and thus thrust, independently, giving the UAV enhanced maneuverability.
Abstract:
In one example, an unmanned aerial vehicle includes a fuselage and a lift assembly. The lift assembly is selected from a plurality of lift assemblies, each of the plurality of lift assemblies having a different flight modality. The fuselage includes a mounting portion configured to mount with any of the plurality of lift assemblies.
Abstract:
A convertiplane has the ability to take off like a helicopter and then fly horizontally like a conventional aircraft. The aircraft includes a variable incidence front wing of variable span located below the fuselage and mounted on a structure in the form of a venturi tube, a rear wing having two propellers for controlling the stability of the vehicle in pitch and roll installed therein, two counter-rotating, pivotally mounted ducted propellers equipped with four flaps orthogonal to each other provided on the sides of the cockpit, engines placed behind the cockpit close to the center of gravity, a static balancing system for controlling the center of gravity of the aircraft consisting of a weight placed in the lower part of the fuselage, self-propelled on the track rack longitudinally to the fuselage, and a digital flight control system.