Abstract:
A vertical take-off and landing (VTOL) aircraft according to an aspect of the present invention comprises a fuselage, an empennage having an all-moving horizontal stabilizer located at a tail end of the fuselage, a wing having the fuselage positioned approximately halfway between the distal ends of the wing, wherein the wing is configured to transform between a substantially straight wing configuration and a canted wing configuration using a canted hinge located on each side of the fuselage. The VTOL aircraft may further includes one or more retractable pogo supports, wherein a retractable pogo support is configured to deploy from each of the wing's distal ends.
Abstract:
Electric aircraft, including in-flight rechargeable electric aircraft, and methods of operating electric aircraft, including methods for recharging electric aircraft in-flight, and method of deploying and retrieving secondary aircrafts.
Abstract:
Electric aircraft, including in-flight rechargeable electric aircraft, and methods of operating electric aircraft, including methods for recharging electric aircraft in-flight, through the use of an unmanned aerial vehicle (UAV) flying independent of and in proximity to the electric aircraft. The electric aircraft and methods of operating and recharging same may involve establishing, in-flight, an electrical connection between the aircraft and the UAV flying in proximity to the aircraft and transferring electricity from an electricity source associated with the UAV to the aircraft through the electrical connection.
Abstract:
Disclosed is an easy landing drone. The drone includes: a propeller changing direction; a propeller tower supporting the propeller; a body connected to the propeller tower; a main wing arranged left-right symmetrically with respect to a horizontal axis of the body and having a pair of holes around a center of gravity of the body; a pair of auxiliary wings disposed in the pair of holes, respectively; and an actuator connected to a base shaft fixed to the main wing through the pair of auxiliary wings and controlling angles of the pair of auxiliary wings.
Abstract:
A vertical take-off and landing (VTOL) aircraft according to an aspect of the present invention comprises a fuselage, an empennage having an all-moving horizontal stabilizer located at a tail end of the fuselage, a wing having the fuselage positioned approximately halfway between the distal ends of the wing, wherein the wing is configured to transform between a substantially straight wing configuration and a canted wing configuration using a canted hinge located on each side of the fuselage. The VTOL aircraft may further includes one or more retractable pogo supports, wherein a retractable pogo support is configured to deploy from each of the wing's distal ends.
Abstract:
An aircraft for unmanned aviation is described. The aircraft includes an airframe, a pair of fins attached to a rear portion of the airframe, a pair of dihedral braces attached to a bottom portion of the airframe, a first thrust-vectoring (“T/V”) module and a second T/V module, and an electronics module. The electronics module provides commands to the two T/V modules. The two T/V modules are configured to provide lateral and longitudinal control to the aircraft by directly controlling a thrust vector for each of the pitch, the roll, and the yaw of the aircraft. The use of directly articulated electrical motors as T/V modules enables the aircraft to execute tight-radius turns over a wide range of airspeeds.
Abstract:
A control system configured to control a deceleration process of an air vehicle which comprises at least one tiltable propulsion unit, each of the at least one tiltable propulsion units is tiltable to provide a thrust whose direction is variable at least between a general vertical thrust vector direction and a general longitudinal thrust vector direction with respect to the air vehicle.
Abstract:
An aircraft for unmanned aviation is described. The aircraft includes an airframe, a pair of fins attached to a rear portion of the airframe, a pair of dihedral braces attached to a bottom portion of the airframe, a first thrust vectoring module and a second thrust vectoring module, and an electronics module. The electronics module provides commands to the two thrust vectoring modules. The two thrust vectoring modules are configured to provide lateral and longitudinal control to the aircraft by directly controlling a thrust vector for each of the pitch, the roll, and the yaw of the aircraft. The use of directly articulated electrical motors as thrust vectoring modules enables the aircraft to execute tight-radius turns over a wide range of airspeeds.
Abstract:
A UAV recovery system including a recovery cart; a guide mechanism for defining the path of the cart; a base station for capturing a UAV tailhook; a momentum transfer system driven by the inertia of the UAV through the arresting member to move the recovery cart along the guide mechanism away from the base station in the same direction as the UAV; an acceleration control device for converging the speeds and positions of the UAV and cart for enabling engagement of the cart and UAV as their relative speeds approach zero; and a brake system for stopping the recovery cart when the cart and UAV are engaged. Also disclosed is a UAV having a tailhook pivotably mounted on the UAV at the center of gravity of the UAV.
Abstract:
An air vehicle configured to augment effective drag to change the rate of descent of the air vehicle in flight via propeller shaft rotation direction reversal, i.e., thrust reversal.