Abstract:
A system for establishing a baseline of a stereoscopic imaging device having a microlens array and methods for making and using the same. The system acquires an object distance between the microlens array and an object of interest and selects first and second lenses from the microlens array based upon the acquired object distance. The system likewise can perform simultaneous localization and mapping (SLAM) with the imaging device. In one embodiment, the system can acquire first and second stereoscopic frames with the microlens array. The system thereby can measure rotations of the second stereoscopic frame with an Inertial Measurement Unit (IMU) and match the first and second stereoscopic frames by combining the rotation data with the first and second stereoscopic frames. The system thereby can enable SLAM systems to perform more accurately and more practically in various indoor and/or outdoor environments.
Abstract:
In one embodiment, an aerial collection system includes an image collection field vehicle that travels at street level and an image collection aerial vehicle that travels in the air above the street. The aerial vehicle collects image data including at least a portion of the field vehicle. The field vehicle includes a marker, which is identified from the collected image data. The marker is analyzed to determine an operating characteristic of the aerial vehicle. In one example, the operating characteristic in the marker includes information for a flight instruction for the aerial vehicle. In another example, the operating characteristic in the marker includes information for the three dimensional relationship between the vehicles. The three dimensional relationship is used to combine images collected from the air and images collected from the street level.
Abstract:
FIG. 3 shows a representation on display 60 of a transmission line tower 42 supporting phase conductors 46, 48, 50 and shield wires 36 and 38 within right of way 58. The angle of view 56 of aerial camera 16 is illustrated by a cone originating at the lens in camera 16. The sample distance at different locations on the object of interest is displayed either as a tooltip 72 for an input device 62 represented by a cursor 70; or on the screen upon a touch for touch input.The operator interactively decides on the tradeoff between angle of view 56 and sample distance at different locations on the object of interest by manipulating the cone representing angle of view 56. After selecting angle of view 56 with a click or touch, it can be translated 74 or rotated 76 to plan to capture as much of the object of interest as possible while meeting sample distance objectives. When the operator is satisfied with the compromise, a click or tap on a save or next button 78 stores the geometry for flight segment 30.
Abstract:
A turret assembly for attachment on the undersurface of an aircraft that reduces performance limitations due to gimbal lock and reduces the cross section profile of the assembly. The assembly includes a roll actuator including a drive shaft. A yoke having a cross member is coupled to the drive shaft and a pair of prongs. The yoke is rotated via the roll actuator and drive shaft along a roll axis oriented substantially parallel to the body of the aircraft. A turret is mounted on the prongs of the yoke. A tilt actuator is contained within the turret. The tilt actuator tilts the turret on a tilt axis relative to the yoke. The tilt axis is perpendicular to the roll axis.
Abstract:
The invention relates to drone configured to communicate with a portable electronic device, such as a smartphone, and being further adapted to take pictures or videos of a user, the drone being an accessory of the electronic device, the drone being movable between a first configuration secured to the electronic device and a second configuration detached from the electronic device, the drone being equipped with a camera.
Abstract:
A mobile terminal including a display unit; a wireless communication unit configured to wirelessly communicate with a flying object; and a controller configured to receive an input for setting at least one member of a created group of members to be a target, and remotely control the flying object to obtain an image of the at least one member set as the target.
Abstract:
The present invention provides methods and apparatus for unmanned aerial vehicles (UAVs) with improved reliability. According to one aspect of the invention, interference experienced by onboard sensors from onboard electrical components is reduced. According to another aspect of the invention, user-configuration or assembly of electrical components is minimized to reduce user errors.
Abstract:
An aerial system and method use a distance sensor to measure spatial distances between the distance sensor and plural vehicles in a vehicle system formed from the vehicles operably coupled with each other during relative movement between the distance sensor and the vehicle system. The spatial distances measured by the distance sensor are used to determine a size parameter of the vehicle system based on the spatial distances that are measured.
Abstract:
The present invention provides systems, methods, and devices related to target tracking by UAVs. The UAV may be configured to receive target information from a control terminal related to a target to be tracked by an imaging device coupled to the UAV. The target information may be used by the UAV to automatically track the target so as to maintain predetermined position and/or size of the target within one or more images captured by the imaging device. The control terminal may be configured to display images from the imaging device as well as allowing user input related to the target information.
Abstract:
A geodetic marking system for marking a known target point, having an automotive, unmanned, remotely controllable air vehicle and having a geodetic position determination arrangement for determining the external actual position of the air vehicle. The air vehicle also has a marking unit for marking the target point, and the marking system has a control unit such that the air vehicle can be positioned relative to the target point position on the basis of the external actual position, which can be determined continuously. The control unit is also configured in such a manner that it is possible to control the marking unit for marking the target point taking into account the actual position, the desired position and a defined marking direction from the marking unit to the target point, with the result that the target point can be marked with geodetic accuracy in the defined marking direction.