Abstract:
Systems, devices, and methods for a transformable aerial vehicle are provided. In one aspect, a transformable aerial vehicle includes: a central body and at least two transformable frames assemblies respectively disposed on the central body, each of the at least two transformable frame assemblies having a proximal portion pivotally coupled to the central body and a distal portion; an actuation assembly mounted on the central body and configured to pivot the at least two frame assemblies to a plurality of different vertical angles relative to the central body; and a plurality of propulsion units mounted on the at least two transformable frame assemblies and operable to move the transformable aerial vehicle.
Abstract:
Embodiments described herein may relate to an unmanned aerial vehicle (UAV) navigating to a medical situation in order to provide medical support. An illustrative method involves a UAV (a) determining an approximate target location associated with a medical situation, (b) using a first navigation process to navigate the UAV to the approximate target location, where the first navigation process generates flight-control signals based on the approximate target location, (c) making a determination that the UAV is located at the approximate target location, and (d) in response to the determination that the UAV is located at the approximate target location, using a second navigation process to navigate the UAV to the medical situation, wherein the second navigation process generates flight-control signals based on real-time localization of the medical situation.
Abstract:
An aircraft including a wing system, a plurality of control surfaces, a camera mounted on a camera pod, and a control system. The camera pod is configured to vary the orientation of the camera field of view only in yaw, relative to the aircraft, between a directly forward-looking orientation and a side-looking orientation. The control system controls the control surfaces such that they induce a significant aircraft yaw causing an identified target to be within the field of view of the camera with the camera in the directly forward-looking orientation.
Abstract:
Embodiments described herein may relate to an unmanned aerial vehicle (UAV) navigating to a target in order to provide medical support. An illustrative method involves a UAV (a) determining an approximate target location associated with a target, (b) using a first navigation process to navigate the UAV to the approximate target location, where the first navigation process generates flight-control signals based on the approximate target location, (c) making a determination that the UAV is located at the approximate target location, and (d) in response to the determination that the UAV is located at the approximate target location, using a second navigation process to navigate the UAV to the target, wherein the second navigation process generates flight-control signals based on real-time localization of the target.
Abstract:
A modular unmanned aerial vehicle (UAV) can include a main body and one or more peripherals configured to be removably attached to the main body. The main body can be configured to identify the peripheral, such as through the provision of an identifying signal on the provisional. The processor can cause the UAV to execute a function based at least in part on the identification of the attached peripheral, or by user interaction with the peripheral or another component of the UAV.
Abstract:
A system and method are provided to support accommodating safe integration of small unmanned aircraft systems (sUASs) into the National Airspace Structure in the United States and to augment previously untracked aircraft positions by opportunistically acquiring their position information and forwarding this information to other systems for display. The disclosed schemes integrate automatic dependent surveillance-broadcast (ADS-B) capabilities in sUASs by providing an ADS-B receiver on the small unmanned aircraft or in association with a ground-based sUAS control and communication workstation. Processing of the ADS-B information is integrated with processing of acquired information on sUAS aerial platform operations. Processed integrated information is displayed locally on the workstation and transmitted to other facilities to be remotely displayed. Acquired position information for the sUAS aerial platform and manned aerial vehicles in a vicinity of the sUAS aerial platform are converted to formats commonly used by air traffic control systems.
Abstract:
Methods and apparatus for avoiding or exploiting air drag on an aerial vehicle are disclosed. In embodiments, the methods and apparatus may be implemented in a controller and used to increase the energy efficiency of an aerial vehicle. In the embodiments, at least one parameter associated with a force on an aerial vehicle is determined. A yaw setting for the aerial vehicle is then determined that exploits or avoids air drag on the aerial vehicle for energy efficiency. The yaw setting may be referenced to a yaw based on directionality in the shape of the aerial vehicle. In other embodiments, a drag associated with a force on an aerial vehicle is determined. It is then determined if there is a selected component in the drag based on a desired maneuver of the aerial vehicle. A yaw setting is then determined based on whether the selected component is in the drag.
Abstract:
The disclosed inventory systems and methods can be used to retrieve and transport items from one location in an inventory system to another. Specifically, an unmanned aerial vehicle (UAV) including passive buoyancy element, a thrust unit, and a retention feature, can be controlled by a management component to retrieve one or more items, transport the item or items, and deposit the item or items. For example, a UAV can be controlled to obtain an item at one location in a warehouse such as a first floor and lift said item to a second location in the warehouse such as a second floor, and deposit the item at the second location.
Abstract:
A unmanned aerial vehicle (UAV) includes a body with plurality of motors, a motor controlling circuit, a microprocessor for controlling the flight state of the UAV, a plurality of motion sensors, and a capacitive touch sensor incorporated into a battery. When the user grasps the UAV by the battery, the touch sensor is activated and the microprocessor alters the flight state of the UAV.
Abstract:
A method for distance detection includes detecting a first distance value between a movable object and a target object in a target direction of the movable object, obtaining an inclination angle of the movable object at the target direction, and calculating a second distance value from the movable object to the target object based upon the inclination angle and the first distance value.