Abstract:
A medical device includes a first substrate, a second substrate, a control module, and an energy storage device. The first substrate includes at least one of a first semiconductor material and a first insulating material. The second substrate includes at least one of a second semiconductor material and a second insulating material. The second substrate is bonded to the first substrate such that the first and second substrates define an enclosed cavity between the first and second substrates. The control module is disposed within the enclosed cavity. The control module is configured to at least one of determine a physiological parameter of a patient and deliver electrical stimulation to the patient. The energy storage device is disposed within the cavity and is configured to supply power to the control module.
Abstract:
A preferred method of the invention introduces organosilicon polymer into the reservoir of a mold with trenches defining a negative mold impression of a feature that has a high aspect ratio in fluid communication with the micro-dimensioned reservoir. The mold is preferably coated with a low-stiction coating. The polymer is moved via capillary action into the negative mold from the reservoir. The polymer is cured. The polymer is then released from the mold. Preferably, the polymer is soaked in a releasing solution prior to release. Preferably, the polymer is released by gripping cured polymer in the reservoir and gently peeling the cured micropolymer from the mold. In preferred embodiments, the polymer is poly-dimethyl-siloxane (PDMS). A preferred structure formed by methods of the invention is polymer microbeam in a liquid having a length of one to a few millimeters and a stiffness of k
Abstract:
Various embodiments provide devices, methods, and systems for high throughput biomolecule detection using transducer arrays. In one embodiment, a transducer array made up of transducer elements may be used to detect byproducts from chemical reactions that involve redox genic tags. Each transducer element may include at least a reaction chamber and a fingerprinting region, configured to flow a fluid from the reaction chamber through the fingerprinting region. The reaction chamber can include a molecule attachment region and the fingerprinting region can include at least one set of electrodes separated by a nanogap for conducting redox cycling reactions. In embodiments, by flowing the chamber content obtained from a reaction of a latent redox tagged probe molecule, a catalyst, and a target molecule in the reaction chamber through the fingerprinting region, the redox cycling reactions can be detected to identify redox-tagged biomolecules.
Abstract:
The present invention relates to a method for manufacturing micro/nanofluidic devices that incorporate overhanging micromechanical and metal components monolithically integrated with the fluidic circuitry.
Abstract:
The present invention relates to a method for functionalising fluid lines (1b) in a micromechanical device, the walls of which include an opaque layer. For this purpose, the invention provides a method for functionalising a micromechanical device provided with a fluid line including a peripheral wall (5) having a surface (2) outside the line and an inner surface (3) defining a space (1b) in which a fluid can circulate, the peripheral wall at least partially including a silicon layer (5a). The method includes the following steps: a) providing a device, the peripheral wall (5) of which at least partially includes a silicon layer (5a) having, at least locally, a thickness (e) of more than 100 nm and less than 200 nm, advantageously of 160 to 180 nm; c) silanising at least the inner surface of the fluid line; d) the localised, selective photo-deprotection on at least the inner surface of the silanised device by exposing the peripheral wall (5) at the point at which said wall has a thickness (e) of more than 100 nm and less than 200 nm, advantageously of 160 to 180 nm.
Abstract:
Provided are three-dimensional (3D) nanodevices including 3D nanostructures. The 3D nanodevice includes at least one nanostructure, each nanostructure including an oscillation portion floating over a substrate and support portions for supporting both lengthwise end portions of the oscillation portion, supports disposed on the substrate to support the support portions of each of the nanostructures, at least one controller disposed at an upper portion of the substrate, a lower portion of the substrate, or both the upper and lower portions of the substrate to control each of the nanostructures, and a sensing unit disposed on each of the oscillation portions to sense an externally supplied adsorption material. Thus, unlike in a typical planar device, generation of impurities between a nanodevice and a substrate can be reduced, and mechanical vibration can be caused. In particular, since 3D nanostructures have mechanical and electrical characteristics, 3D nanodevices including new 3D nanostructures can be provided using nano-electro-mechanical systems (NEMS). Also, a single electron device, a spin device, or a single electron transistor (SET)-field effect transistor (FET) hybrid device can be formed using a simple process unlike in planar devices.
Abstract:
A resin bonding method according to the present invention is a resin bonding method for bonding a first resin and a second resin including (I) a step of irradiating spaces containing oxygen molecules with vacuum ultraviolet light having a wavelength of 175 nm or less, the spaces being in contact with surfaces of the first and second resins; and (II) a step of, after the irradiation, subjecting the surfaces to temperature rise while the surfaces are in contact with each other, to bond the first resin and the second resin together with the surfaces serving as bonding surfaces. In the step (I), the surfaces of the first and second resins may be further irradiated with the vacuum ultraviolet light. In this case, a light amount of the vacuum ultraviolet light having reached the surfaces is preferably, for example, 0.1 J/cm2 or more and 10 J/cm2 or less.
Abstract translation:本发明的树脂接合方法是将第一树脂和第二树脂接合的树脂接合方法,其包括(I)使用具有175nm以下的波长的真空紫外线照射含氧分子的空间的步骤, 与第一和第二树脂的表面接触; 和(II)在照射之后,当表面彼此接触时使表面经历温度升高的步骤,将第一树脂和第二树脂与作为粘合表面的表面结合。 在步骤(I)中,可以进一步用真空紫外光照射第一和第二树脂的表面。 在这种情况下,到达表面的真空紫外光的光量优选为例如0.1J / cm 2以上且10J / cm 2以下。
Abstract:
The present invention relates to a process for fabricating microchannels on a substrate and to a substrate comprising these microchannels, the invention being especially applicable to the fabrication of microstructured substrates for microelectronic, microfluidic and/or micromechanical systems.The process includes a step (a) of producing at least one or at least two patterns 2 on the surface of a bottom layer 1 and a step (b) of depositing, on top of the bottom layer and the pattern or patterns, a layer 3 of polymer material obtained by polymerizing an organic or organometallic monomer that contains siloxane functional groups, for example tetramethyldisiloxane, in a plasma-enhanced, optionally remote plasma-enhanced, chemical vapor deposition reactor (PECVD or optionally RPECVD) reactor.The layer of polymer material is deposited so as to create, in place of the pattern and after development by decomposing this pattern, or between the two patterns without development/decomposition, a channel 4a, 4b, 4c, 4d closed over at least part of its length.
Abstract:
A method of forming nanopore is provided that includes forming a first structure on a substrate, and forming a second structure overlying the first structure. An intersecting portion of the first and the second structures is etched to provide an opening of nanopore dimensions. The substrate may be etched with a backside substrate etch to expose the nanopore opening.
Abstract:
A method of forming a nanoporous film is disclosed. The method comprises forming a coating solution including clusters, surfactant molecules, a solvent, and one of an acid catalyst and a base catalyst. The clusters comprise inorganic groups. The method further comprises aging the coating solution for a time period to select a predetermined phase that will self-assemble and applying the coating solution on a substrate. The method further comprises evaporating the solvent from the coating solution and removing the surfactant molecules to yield the nanoporous film.