Abstract:
Provided is an oriented multilayer porous film comprising at least one layer comprising: a heat, solvent, and degradation resistant matrix polymer; a plurality of interconnecting pores; and a porosity less than 90%. The film is made by a dry and/or wet method, with its multilayer structure constructed by coextrusion, lamination, and coating. The film of this disclosure finds a wide range of applications as a permselective medium for use in energy harvesting and storage, filtration, separation and purification of gases and fluids, CO2 and volatile capture, electronics, devices, structural supports, packaging, labeling, printing, clothing, drug delivery systems, bioreactor, and the like. The film is preferably used as a separator of lithium-ion, lithium-sulfur, lithium-air, metal-air, and nonaqueous electrolyte batteries.
Abstract:
The present invention relate to three dimensional porous polysaccharide matrices able to induce mineralisation of a tissue in osseous site, as well as in non-osseous site, in the absence of stem cells or growth factors.
Abstract:
Disclosed is a method of manufacturing a porous polymer membrane, including forming pores by applying water pressure to a polymer membrane composed of a polymer and a metal salt, wherein the porous polymer membrane has properties suitable for use as a separator for a secondary battery.
Abstract:
The present invention relate to three dimensional porous polysaccharide matrices able to induce mineralisation of a tissue in osseous site, as well as in non-osseous site, in the absence of stent cells or growth factors.
Abstract:
Provided herein are materials and methods of reducing contamination in a biological substance or treating contamination in a subject by one or more toxins comprising contacting the biological substance with an effective amount of a sorbent capable of sorbing the toxin, wherein the sorbent comprises a plurality of pores ranging from 50 Å to 40,000 Å with a pore volume of 0.5 cc/g to 5.0 cc/g and a size of 0.05 mm to 2 cm and sorbing the toxin. Also provided are kits to reduce contamination by one or more toxins in a biological substance comprising a sorbent capable of sorbing a toxin, wherein the sorbent comprises a plurality of pores ranging from 50 Å to 40,000 Å with a pore volume of 0.5 cc/g to 5.0 cc/g and a size of 0.05 mm to 2 cm and a vessel to store said sorbent when not in use together with packaging for same.
Abstract:
The present invention relate to three dimensional porous polysaccharide matrices able to induce mineralisation of a tissue in osseous site, as well as in non-osseous site, in the absence of stent cells or growth factors.
Abstract:
A rigid flow control device includes a porous rigid body having an outer surface and an inner surface. The body defines a flow path and is formed from a material operatively arranged with a surface energy less than that of the fluid for passively impeding an undesirable component of the fluid more than a desirable component of the fluid.
Abstract:
The present invention provides for concentrated aqueous silk fibroin solutions and an all-aqueous mode for preparation of concentrated aqueous fibroin solutions that avoids the use of organic solvents, direct additives, or harsh chemicals. The invention further provides for the use of these solutions in production of materials, e.g., fibers, films, foams, meshes, scaffolds and hydrogels.
Abstract:
The present invention relate to three dimensional porous polysaccharide matrices able to induce mineralisation of a tissue in osseous site, as well as in non-osseous site, in the absence of stem cells or growth factors.
Abstract:
A cellulose sponge cloth based containing a net or grid as internal reinforcement is provided, with the sponge cloth further including a uniform distribution of fibers and/or durably softening polymers that are not water-leachable. The sponge cloth is produced by the viscose process by mixing with the fibers and/or the softening polymers and the pore former with cellulose xanthate and forming the resulting sponge cloth raw material into a thin layer. The grid or net is placed onto this layer, followed by a further layer of the sponge cloth raw material. Alkaline or acidic coagulation and regeneration baths and optional wash baths are used to dissolve the pore former out of the sponge cloth and regenerate the cellulose from the cellulose xanthate. The sponge cloth is bend-resistant, it does not break in the dry state. The sponge cloth is envisioned for cleaning and decontamination in industry and the home.