Abstract:
A polysaccharide based aerogel comprising a network of polysaccharide fibers with pores therebetween, wherein the sizes of the pores are in the micrometer range.
Abstract:
Provided is a foam material, comprising a plurality of substantially collagenous beads, wherein the foam material is a bead foam, and wherein adjacent collagenous beads are fused together by a network of collagen fibres. Also provided are methods for preparation of foam materials comprising a plurality of substantially collagenous beads. The foam materials may be used in applications such as bioscaffolds for wound healing, soft tissue regeneration and augmentation, for localized cell delivery, or as cell culture substrates for research. The foam materials include natural collagen fibrils that provide a stable scaffold and enhance integration of the implanted scaffold and regeneration of cells and tissue.
Abstract:
A polypeptide porous body of the present invention is a porous body of a polypeptide derived from spider silk proteins. The polypeptide includes a water-insoluble polypeptide. The polypeptide porous body has an apparent density of 0.1 g/cm3 or less. A method for producing the polypeptide porous body includes: a solution production step in which the polypeptide is dissolved in at least one solvent selected from DMSO, DMF, and these with an inorganic salt, so as to obtain a solution of the polypeptide; a step in which the solution produced in the solution production step is substituted with a water-soluble solvent so as to obtain a polypeptide gel; and a step in which the polypeptide gel is dried. Thereby, the present invention provides a polypeptide porous body having excellent water absorbability and a polypeptide porous body suitable for application to a living body, and a method for producing the same.
Abstract:
The present invention relates to a method for preparing a porous scaffold for tissue engineering. It is another object of the present invention to provide a porous scaffold obtainable by the method as above described, and its use for tissue engineering, cell culture and cell delivery. The method of the invention comprise the steps consisting of a) preparing an alkaline aqueous solution comprising an amount of at least one polysaccharide and one cross-linking agent b) freezing the aqueous solution of step a) c) sublimating the frozen solution of step b). characterized in that step b) is performed before the cross-linking of the polysaccharide occurs in the solution of step a).
Abstract:
Highly porous, lightweight, and sustainable hybrid organic aerogels with ultra-low densities and excellent material properties and methods for preparing them are provided, including, e.g., PVA/CNF/GONS, RF/CNF/GONS, and PVA/CNF/MWCNT. The aerogels are modified to have a super-hydrophobic surface, thus leading to an extremely low swelling ratio and rate of moisture absorption.
Abstract:
A process for producing a polysaccharide sponge comprises the steps of (A) freezing a photoreactive polysaccharide solution, and (B) irradiating the frozen photoreactive polysaccharide solution with light to crosslink the photoreactive polysaccharide, thereby obtaining the polysaccharide sponge. The process includes simplified steps requiring no removal of solvent, and has such an advantage that impurities are easily removed therefrom.
Abstract:
Provided are a novel foam which has a uniform fine-cell structure and is excellent in toughness and heat resistance, and a production method therefor. Also provided is a functional foam which includes the above-mentioned foam and has imparted thereto various functions. The foam includes spherical cells, in which: the spherical cells each have an average pore diameter of less than 20 μm; the foam has a density of 0.15 g/cm3 to 0.9 g/cm3; and the foam is crack-free in a 180° bending test. The functional foam includes the foam.
Abstract translation:提供具有均匀的细胞结构并且韧性和耐热性优异的新型泡沫及其制造方法。 还提供了包括上述泡沫体并赋予其各种功能的功能泡沫体。 泡沫包括球形细胞,其中:球形细胞的平均孔径小于20μm; 该泡沫体的密度为0.15g / cm 3至0.9g / cm 3; 并且在180°弯曲试验中,泡沫是无裂纹的。 功能泡沫包括泡沫。
Abstract:
Scaffold comprises a polymer defining macropores and comprising hydroxypropylcellulose partially substituted by a substituent comprising a self-crosslinkable group, which is crosslinked through the self-crosslinkable group. The macropores have an average pore size larger than 50 microns and are at least partially interconnected. In one method, bicontinuous emulsion comprising a continuous aqueous phase and a continuous polymer phase is formed. The polymer phase comprises hydroxypropylcellulose partially substituted by a substituent comprising a self-crosslinkable group, and is crosslinked through the self-crosslinkable group to form a polymer defining at least partially interconnected pores. In another method, phase separation is induced in a solution comprising a polymer precursor and water to form a bicontinuous emulsion comprising a continuous polymer phase and a continuous aqueous phase. The polymer precursor comprises a self-crosslinkable group and is crosslinked through the self-crosslinkable group in the emulsion to form a polymer defining at least partially interconnected macropores.
Abstract:
Scaffold comprises a polymer defining macropores and comprising hydroxypropylcellulose partially substituted by a substituent comprising a self-crosslinkable group, which is crosslinked through the self-crosslinkable group. The macropores have an average pore size larger than 50 microns and are at least partially interconnected. In one method, bicontinuous emulsion comprising a continuous aqueous phase and a continuous polymer phase is formed. The polymer phase comprises hydroxypropylcellulose partially substituted by a substituent comprising a self-crosslinkable group, and is crosslinked through the self-crosslinkable group to form a polymer defining at least partially interconnected pores. In another method, phase separation is induced in a solution comprising a polymer precursor and water to form a bicontinuous emulsion comprising a continuous polymer phase and a continuous aqueous phase. The polymer precursor comprises a self-crosslinkable group and is crosslinked through the self-crosslinkable group in the emulsion to form a polymer defining at least partially interconnected macropores.