Abstract:
Apparatus for performing and measuring chemical reactions includes a reaction test apparatus having reaction wells wherein reactants are controllably mixed, and exposure apparatus which receives and positions the reaction test apparatus adjacent a photographic film. Each of the reaction wells includes at least two reaction chambers, arranged in a side by side fashion. All but the final reaction chamber have upwardly sloping sides, so that liquid placed in one reaction chamber can flow to the next reaction chamber when the apparatus is tilted. In a preferred embodiment, the reaction wells are supported in a plate that is structurally integral with the wells but separates the wells from each other. The test plate is retained in the exposure apparatus, and liquid is controllably flowed from one reaction chamber to the next by tilting the exposure apparatus. The apparatus of the invention is particularly suited for measuring reactions that produce luminescence of short duration, as the reactants can be conveniently mixed in darkness, while the film is being exposed.
Abstract:
An apparatus for the calibration and quality assurance of a multichannel spectrophotometer, particularly an ELISA spectrophotometer, comprises a series of filters having a known first color and linearly increasing optical density. The response of the spectrophotometer is measured against the known color and linearly increasing optical density. Additional filters of at least one additional color permit checking the color response of the spectrophotmeter. An algorithm determines whether the response conforms to predetermined conditions. An output is produced to provide a record of the calibration and quality assurance of the spectrophotometer. The invention has particular utility for conducting calibration and quality assurance of ELISA spectrophotometers used in clinical laboratory screening for infectious diseases, such as Hepatitis B and the AIDS viruses.
Abstract:
A multiwell plate suitable for use in a spectrometer which uses a vertical beam of light comprising a first plate having a plurality of wells for receiving sample, wherein the wells have transparent bottom surfaces to allow for the transmission of a vertical beam of light, and a unitary insert comprising a biochemically compatible microporous surface capable of binding biological materials shaped to fit into at least one well of the plate without interfering with the vertical beam of light.
Abstract:
An apparatus and method for reading agglutination tests and other procedures by scanning the contents of a microtest well or other sample-holding vessel to determine a certain charactersitic of the contents, such as the size of an agglutination button or other solid mass in the well.
Abstract:
Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.
Abstract:
The method of analyzing absorbance of one or more liquid samples (3) arranged in the wells (2) of a microplate (1) comprises the steps of setting a desired wavelength falling within the wavelength range of 380 nm-750 nm for absorbance measurement (101), illuminating the samples (3) using electromagnetic radiation having a bandwidth of at most 20 nm around the set wavelength (102), measuring radiant flux transmitted through each sample (3) (103), on the basis of measured radiant flux values, determining an absorbance value for each sample (3) (104), and visualizing the absorbance values on a display (12) as a matrix comprising a plurality of cells (23), each cell (23) corresponding to a well (2) of the microplate (1) (105). The set wavelength is used as an input for determining the visual properties of the cells (23).
Abstract:
Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.
Abstract:
An optofluidic diagnostic system and methods for rapid analyte detections. The system comprises an optofluidic sensor array, a test plate and an optical detection cartridge. The sensor array supports one or more distinct sensor units, each having a reactor section designed to temporarily enter a series of different kinds of wells in the test plate. One kind of well is a sample reservoir that holds reagent solution to be transferred into the reactor section. Another kind of well is a drainage chamber that removes reagent solution from the reactor section. A third kind of well is a colorant reservoir that holds a colorant reagent transferable into a reactor section. Finally, the sensor unit is transferred to the optical detection cartridge where it is placed into an isolation booth during the optical detection process so that its flat observation face is stationed in a viewing window opposite an optical detector lens.
Abstract:
Systems and methods for antimicrobial susceptibility testing (AST) are provided in which variances in anionic charge of microbes are taken into account. Cationic surfactants may be used to sensitize otherwise resistant microorganisms to polycationic antibiotics, such as polymyxins. Since microorganisms gain polycationic antibiotic resistance through mutations that decrease surface anionic charge, the susceptibility of a microorganism to a polycationic antibiotic may be indicative of its surface charge. In order to enable electrostatic interactions with the microorganism surface, a cationic surfactant may be applied to increase the anionic charge of the microorganism.
Abstract:
Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.