Abstract:
This invention is a method for fabricating polymer ridged waveguides by using tilted immersion lithography. It includes the steps of: 1. preparing step; 2. calculating step; 3. first tilted immersion lithography step; 4. rotating 180-degree step; 5. second tilted immersion lithography step; and 6. finishing step. By these two tilted immersion lithography steps as well as the rotating 180-degree step between them, the UV light refracts and makes the photoresist forming a 45-degree ridged waveguide. This fabricating method is simple and stable. It can reduce the fabricating time and cost. Also, it is suitable for mass production and it has wide-ranged applications.
Abstract:
A write pole for vertical magnetic recording is described. It includes a trapezoidal prism of high magnetic moment material, having inwardly sloping sidewalls. Its parallel surfaces are between about 0.1 and 0.3 microns apart and the sidewalls slope in the range of 15.5 to 60 degrees relative to vertical.
Abstract:
It is very difficult to produce a negative wall angle from either negative or positive-tone chemically amplified resists, especially by e-beam lithography. This problem has now been overcome by first forming a photoresist pedestal in the conventional way, followed by flood exposing with electrons. Then, a second development treatment is given. This results in removal of additional material from the sidewalls, said removal being greatest at the substrate and least at the pedestal's top surface, resulting in negatively sloping sidewalls. Application of this method to a process for forming a pole tip for a vertical magnetic writer is also discussed.
Abstract:
The method manufactures a nozzle plate including a nozzle having a tapered section where a diameter gradually decreases from a liquid supply side toward a liquid ejection side, and a straight section which is substantially cylindrical and is situated nearer a liquid ejection side of the tapered section. The method comprises the steps of: forming a first photosensitive material in a form of a layer on a substrate; placing a straight section forming member including a hole section having a shape substantially corresponding to a shape of the straight section, on the first photosensitive material; filling a second photosensitive material into the hole section; radiating a prescribed light toward the straight section forming member, in such a manner that substantially all of the second photosensitive material is exposed and the first photosensitive material is exposed in a tapered shape having a diameter which gradually increases toward the substrate; removing the straight section forming member from the first photosensitive material and the second photosensitive material; carrying out development of the first photosensitive material and the second photosensitive material after removing the straight section forming member from the first photosensitive material and the second photosensitive material; forming a metal layer which is to serve as the nozzle plate, on the substrate, by a plating method where the first photosensitive material and the second photosensitive material left on the substrate after carrying out the development of the first photosensitive material and the second photosensitive material are used as a mold; and removing the metal layer from the substrate, the first photosensitive material and the second photosensitive material.
Abstract:
An illumination system for an extreme ultraviolet (EUV) lithography system may include multiple sources of EUV light. The system may combine the light from the multiple sources when illuminating a mask.
Abstract:
Ion beam lithography technique wherein a higher amount of radiation energy is deposited to predetermined regions in the bulk if a suitable substrate. By selecting the radiation nature, its energy and the irradiation parameters a structure can be created in the bulk of the material leaving the surface essentially untouched.
Abstract:
In some aspects, the invention relates to methods and systems for creating apodized periodic structures, such as apodized gratings in fibers. To create the periodic structures, a photosensitive medium is exposed to a spatially-varying radiation pattern. During the exposure, the position of the radiation pattern can oscillate with the respect to the photosensitive medium, thereby changing the average local refractive index of the medium. These methods and systems may be used to create regular structures in any appropriate medium, such as doped glasses and photosensitive polymers.
Abstract:
In a lithographic proximity method for wiring an end or internal side surface of a substrate the required exposure of strips (76), defining the wiring pattern, is performed by means of a mask (70) comprising a diffraction structure (74) to deflect exposure radiation (b) to the side surface. An exposure beam, which is perpendicularly incident on the mask, is used so that enhanced tolerance for proximity gap width variations is obtained. The method allows manufacture of accurate and fine wiring.
Abstract:
Container structures for use in integrated circuits and methods of their manufacture without the use of mechanical planarization such as chemical-mechanical planarization (CMP), thus eliminating CMP-induced defects and variations. The methods utilize localized masking of holes for protection of the inside of the holes during non-mechanical removal of exposed surface layers. The localized masking is accomplished through differential exposure of a resist layer to electromagnetic or thermal energy. The container structures are adapted for use in memory cells and apparatus incorporating such memory cells, as well as other integrated circuits.
Abstract:
An illumination system for an extreme ultraviolet (EUV) lithography system may include multiple sources of EUV light. The system may combine the light from the multiple sources when illuminating a mask.