Abstract:
A memory device includes a memory cell array and a data input/output circuit. The memory cell array includes a plurality of memory cells connected to a plurality of bit lines and a plurality of word lines. The data input/output circuit is configured to receive data from external data pins of the memory device, output the received data to the memory cell array through a plurality of input/output lines electrically coupled to the plurality of bit lines, receive data read from the memory cell array through the plurality of input/output lines, and output the read data through the external data pins. For each external data pin, the data input/output circuit is configured to output data received at the external data pin to a corresponding input/output line. The corresponding input/output line is selected in response to bit values of a set of bits included in the received data.
Abstract:
In managing incoming bus traffic storage for store cell memory (SCM) in a sequential-write, random-read system, a priority encoder system can be used to find a next empty cell in the sequential-write step. Each cell in the SCM has a bit that indicates whether the cell is full or empty. The priority encoder encodes the next empty cell using these bits and the current write pointer. The priority encoder can also find next group of empty cells by being coupled to AND operators that are coupled to each group of cells. Further, a cell locator selector selects a next empty cell location among priority encoders for cell groups of various sizes according to an opcode by appending ‘0’s to cell locations outputs from priority encoders that are smaller than the size of the SCM.
Abstract:
An apparatus for adjustment of a digital delay function of a data memory unit comprising said data memory unit (102), an elastic store register, ESR, (104) and read clock and write clock adapted to control read and write operations, a write counter associated with the write clock and a read counter associated with the read clock. Said memory (102) works in series with said ESR (104). The memory (102) delivers two data elements from two logically neighbouring cells. Said ESR (104) writes the two data elements from the memory (102) at every cycle of the write clock, wherein if the write counter is increased by one at a cycle of the write clock the output position in the memory (102) is not changed, and if the write counter is increased by two at one cycle of the write clock the output position in the memory (102) is moved backward by one data element and if the write counter is not changed at one cycle of the write clock the output position in the memory (102) is moved forward by one data element.
Abstract:
A memory access scheme employing one or more sets of shift registers interconnected in series to which data may be loaded from or written into one or more memory devices. That is, data from the memory devices may be parallel loaded into the sets of shift registers and then serially shifted through the shift registers until it is output from the sets of shift registers and transferred to its destination. Additionally, the data may be read from and loaded into the memory devices to/from the sets of shift registers such that the shifting of the shift registers is uninterrupted during the reading and/or loading of data. Additionally, data from the memory devices may be loaded into two or more parallel chains of shift registers and then serially shifted through the shift register chains.
Abstract:
A memory read circuit includes k sense amplifiers provided for respective k bit lines and reading out data from their corresponding bit lines, where k is a natural number, a shift register that includes k flip-flops connected in cascade and arranged to hold outputs from corresponding sense amplifiers, and to output the outputs from the k sense amplifiers as serial data, and expected value setting section arranged to store in the k flip-flops expected value data on the outputs from the corresponding sense amplifiers, and a determination section arranged to determine whether the expected value data stored in the flip-flops matches the outputs from the corresponding sense amplifiers.
Abstract:
An array of non-volatile memory cells arranged in logical columns and logical rows, and associated circuitry to enable reading or writing one or more memory cells on a row in parallel. In some embodiments, the array of memory cells may include a phase change material. In some embodiments, the circuitry may include a write driver, a read driver, a sense amplifier, and circuitry to isolate the memory cells from the sense amplifier with extended refresh. In some embodiments, the circuitry may further include shift registers and one or more arithmetic logic units to provide a video memory.
Abstract:
The present invention relates to a method for reading memory cells by means of sense amplifiers, the memory cells being linked to bit lines, the reading of each memory cell comprising a phase of precharging the bit line to which the memory cell is linked and a phase of actually reading the memory cell. According to the present invention, each sense amplifier is used to precharge at least two bit lines, then to read one memory cell in one of the precharged bit lines. The present invention applies particularly to serial memories, for the precharge-ahead of bit lines having the same partial address, while a read address is being received.
Abstract:
An amplifier circuit (R/A) conducts the first stage of ordering of whether to output data of four data bus pairs at the first half (first or second) or at the last half (third or fourth) based on the value of a signal EZORG1 reflecting the value of the least significant second bit of an externally applied column address. A switch circuit conducts the second stage of ordering to determine which is to be the first and the second of the two data output as the first half and to determine which is to be the third and the fourth of the two data output as the last half based on the value of a signal EZORG0 reflecting the value of the least significant bit in the externally applied column address.
Abstract:
A memory circuit (14) having features specifically adapted to permit the memory circuit (14) to serve as a video frame memory is disclosed. The memory circuit (14) contains a dynamic random access memory array (24) with buffers (18, 20) on input and output data ports (22) thereof to permit asynchronous read, write and refresh accesses to the memory array (24). The memory circuit (14) is accessed both serially and randomly. An address generator (28) contains an address buffer register (36) which stores a random access address and an address sequencer (40) which provides a stream of addresses to the memory array (24). An initial address for the stream of addresses is the random access address stored in the address buffer register (36).
Abstract:
An input/output circuit inputs/outputs serial data. A register section comprises a first and a second register. The first register converts the serial data into parallel data. The second register converts parallel data into serial data. A first control signals supply a conversion timing for each bit when the serial data are converted into the parallel data. A second control signals supply a conversion timing for each bit when the parallel data are converted into the serial data. The signal generating circuit controls a timing of rise or fall of the first control signals and sets which of the memory cells should store a value for each bit, of the serial data, and controls a timing of rise or fall of the second control signals and sets which number of value of the serial data should be the value for each bit, of the parallel data read from the memory cells.