Abstract:
Apparatus and method are provided for a package structure that enables mounting of a field-emitting cathode into an electron gun. A non-conducting substrate has the cathode attached and the cathode is electrically connected to a pin through the substrate. Other pins are electrically connected to electrodes integral with the cathode. Three cathodes may be mounted on a die flag region to form an electron gun suitable for color CRTs. Accurate alignment of an emitter array to the apertures in the electron gun and other electrodes such as a focusing lens is achieved. The single package design may be used for many gun sizes. Assembly and attachment of the emitter array to the electron gun during construction of the gun can lower cost of construction.
Abstract:
Apparatus and method are provided for a package structure that enables mounting of a field-emitting cathode into an electron gun. A non-conducting substrate has the cathode attached and the cathode is electrically connected to a pin through the substrate. Other pins are electrically connected to electrodes integral with the cathode. Three cathodes may be mounted on a die flag region to form an electron gun suitable for color CRTs. Accurate alignment of an emitter array to the apertures in the electron gun and other electrodes such as a focusing lens is achieved. The single package design may be used for many gun sizes. Assembly and attachment of the emitter array to the electron gun during construction of the gun can lower cost of construction.
Abstract:
A vacuum envelope that can improve the vacuum degree in a field emission device is provided. The vacuum envelope includes the cathode side substrate 2 on which field emission elements are formed and the anode substrate 1 spaced by a predetermined distance in the electron emission direction. At least two openings are formed before sealing the vacuum envelope. The remaining gas is ousted from the vacuum envelope by introducing a high temperature gas inside the vacuum envelope for a predetermined period of time. Thereafter, one of the openings is sealed while the envelope is being evacuated to a vacuum state through the remaining openings.
Abstract:
A method and apparatus for delivering localized x-ray radiation to the interior of a body includes a plurality of x-ray sources disposed in a distal portion of a flexible catheter shaft. The plurality of x-ray sources are secured to a flexible cord disposed longitudinally throughout at least a portion of the shaft. The plurality of x-ray sources are electrically coupled to a control circuit for activating specific ones of the plurality of x-ray sources in order to customize the irradiation of the interior of the body.
Abstract:
A field emission display having an n-channel high voltage thin film transistor is disclosed. According to the present invention, a signal for driving pixels controls by the nHVTFT attached with each pixel, therefore, the signal voltage of row and column drivers is exceedingly decreased. As a result, it is possible to implement a field emission display capable of providing a high quality picture in a low consumption power, a low driving voltage and inexpensive to manufacture, and preventing a line cross talk using the nHVTFT. By using a cylindrical resistive body underlying a cone-shaped emitter tip, the present invention is to provide a field emission display having an excellent contollability and stability of the emission current, and a dynamic driving capability.
Abstract:
A method for fabricating a field emission display is disclosed. The method includes the steps of arranging a sealing layer between a face plate and a substrate, heating the sealing layer until the sealing layer adheres to the face plate and the substrate, and then pulling the face plate away from the sealing layer so that the vacuum is improved. The sealing layer may be constructed from glass and heated with a heating coil made from ni-chrome wire. The elements can be positioned using industrial robots using common manufacturing techniques.
Abstract:
A cell driving device of a field emission display having a field emission pixel cell with a cathode (10) for emitting electrons and a gate electrode (12) for focusing and accelerating the electrons emitted from the cathode. The cell driving device includes: a first switching unit (14) for switching a first voltage (Vdd1) provided to the gate electrode (12); at least more than two transistors (18, 20, 22 and 24) for current control, which are in parallel connected to form a current mirror between the cathode and a second voltage (Vdd2); a voltage dividing unit coupled between a third voltage (Vdd3) and the second voltage (Vdd2) to drive the at least more than two transistors (18, 20, 22 and 24) for current control at the same voltage; at least more than two transistors for voltage switch each connected between the voltage dividing unit and the transistor for current control; and a controlling unit (38) for controlling at least more than two transistors (30, 32, 34 and 36) for voltage switch according to the size of a video signal (VS).
Abstract:
A field emitter array device includes a ceramic substrate member having a multiplicity of through conductive vias therein. An insulative material layer is located on the ceramic substrate member. An addressable array of gate and emitter line elements is located on the insulative material and is conductively coupled to the through substrate conductive vias. A backside connector is located on the ceramic substrate member and conductively coupled to the vias for connection of the ceramic substrate member with an array driver device for the addressable array of emitter and gate line elements. A field emitter array of field emitter elements on the insulative material layer of the ceramic substrate member which are operatively coupled with the addressable array of gate and emitter line elements.
Abstract:
A cold cathode structure, useful for field emission displays, is disclosed. A thin resistive silicon film is disposed on a glass substrate; conductive emitter tips are disposed on top thereof. An alloy of amorphous silicon and amorphous carbon is used for the emitter tips. The proportion of the carbon in the alloy increases, gradually or abruptly, from the base to the top of the emitter tips. The carbon gradient is implemented during the process step, in which an n-type silicon layer is formed from which the emitter tips are made in subsequent masking and etching steps. The amount of carbon makes the emitter tips harder and gives lower work function at greater stability. Moreover, the carbon gradient allows for additional sharpening of the emitter tips.
Abstract:
A method of fabricating an anode plate 80 for use in a field emission device comprising the steps of providing a substantially transparent substrate 70, depositing a layer of a transparent, electrically conductive material 90 on a surface of the substrate, and then removing portions of said layer of conductive material to leave stripes of said conductive material 90.sub.R, 90.sub.G, 90.sub.B. The stripes of conductive material have a first and second corner 84, 88 distal from the substrate 70. The first and second corners 84, 88 of the stripes of conductive material are rounded and luminescent material 74 is applied on the conductive stripes 90. The first and second corners 84, 88 are rounded by applying voltage to the stripes 90 and then etching the stripes to form the rounded corners 84, 88.