Abstract:
A base station for controlling transmission power during the establishment of a communication channel utilizes the reception of a short code during initial power ramp-up. The short code is a sequence for detection by the base station which has a much shorter period than a conventional access code. The ramp-up starts from a power level that is lower than the required power level for detection by the base station. The power of the short code is quickly increased until the signal is detected by the base station. Once the base station detects the short code, it transmits an indication that the short code has been detected.
Abstract:
Interference cancellation techniques for use in a wireless multicarrier communications system where signals from multiple wireless networks might be present and interfering with the detection and demodulation processes are disclosed. Interference cancellation is applied to the interfering network before removing same-system interference. By removing the contribution of all interfering systems' from a receiver's aggregate signal, the receiver is capable of detection and demodulation. Performance can be further improved by including an additional level of interference cancellation within the system of interest to separate the individual user of interest.
Abstract:
A system determines if a primary paging channel should be received based on an examination of a quick paging channel. A first QPCH symbol is examined (102) and the normalized pilot energy is determined (104). If the normalized pilot energy is above a first threshold (106), the symbol is demodulated and the QPCH-symbol-to-pilot-energy ratio is determined (110) and compared against another threshold (112). If the normalized pilot energy is below the first threshold, the system proceeds to the second QPCH symbol immediately. Depending on the resulting values, a second QPCH signal is examined (108), the system sleeps (114), or the system decides (116) to process the primary paging channel directly (118). If the second signal is demodulated, and if its normalized pilot energy is high enough, it also is demodulated and the ratio of the sum-of-the-combined-QPCH-symbols to the sum-of-the-combined-pilot-energies is determined (122). If this ratio exceeds a threshold (124), the primary paging channel is processed (118); otherwise the system sleeps (114).
Abstract:
A mobile station is provided for autonomously detect an abrupt change of a propagation environment of a radio wave signal from a base station for servicing a peripheral cell and immediately executing a peripheral cell search. In order to execute a received signal strength indication plural times within one period of the peripheral cell search, the mobile station operates to set a cell search execution period &Dgr;t1 to a timer of a peripheral cell search controller and a RSSI measuring execution period &Dgr;t2 to a timer. The RSSI measuring unit operates to measure the RSSI in the receiving band at each RSSI measuring execution period &Dgr;t2 and immediately execute the peripheral cell search when the peripheral cell search controller determines that the RSSI has greatly varied.
Abstract:
A code-division-multiple-access (CDMA) system employing spread-spectrum modulation. The CDMA system has a base station (BS), and a plurality of subscriber units. The signals transmitted between the base station and subscriber unit use spread-spectrum modulation. The improvement method for adaptive forward power control (APC) from a base station (BS) to a subscriber unit (SU), comprises the steps of sending from the base station, using spread-spectrum modulation, a BS-spreading code on a forward channel. The subscriber unit despreads the BS-spreading code on the forward channel as a despread signal, determines a first power level Pd which includes power of the despread signal plus noise and a second power level PN, which includes despread-noise power. The subscriber unit determines a first error signal e1, from the first power level Pd, the second power level PN, and a required signal-to-noise ratio SNRREQ for service type, and a second error signal e2, from a measure of total received power Pr and an automatic gain control (AGC) set point Po. The subscriber unit forms a combined error signal from the first error signal e1, the second error signal e2, a first weight a1 and a second weight a2, and hard limits the combined error signal to form a single APC bit. The APC bit is transmitted to the base station. In response to the APC bit, the base station adjusts transmitter power to the subscriber unit.
Abstract:
The invention aims to decrease a processing load and power consumption for a path searcher during a soft hand-over process and fast search for multipath signals. The invention is so configured that correlation integrators 18a through 18h are divided into a group to search a base station as hand-over origin for multipath signals and another group to search a base station as hand-over destination for multipath signals. This makes it possible to simultaneously search the base stations as hand-over origin and destination for multipath signals. Consequently, a single process can search the base stations as hand-over origin and destination for multipath signals. It is possible to decrease a processing load and power consumption for the path searcher during the soft hand-over process. In addition, multipath signals can be searched fast.
Abstract:
A multicast communication method in a CDMA mobile communication system which is capable of reducing a transmission power in a base station system, and is capable of performing an efficient multicast operation for a large number of mobile subscribers is provided. The starting of information distribution by a multicast operation and identification information indicating a content of the information thereof are notified through a broadcast channel to a mobile subscriber. Further, through the broadcast channel, information such as a spread code or the like to be used at this time, which is necessary for actual reception of communication data, is notified. Then, in the mobile subscriber, a surround environment of the mobile subscriber is checked to determine the possibility of simultaneous receiving from a plurality of other base station systems. If possible, similar notified information is also received from other base station systems. Thus, all kinds of information regarding the spread code or the like to be used for receiving distributed information are obtained.
Abstract:
A method of controlling transmission power during the establishment of a channel in a CDMA communication system utilizes the transmission of a short code from a subscriber unit to a base station during initial power ramp-up. The short code is a sequence for detection by the base station which has a much shorter period than a conventional spreading code. The ramp-up starts from a power level that is lower than the required power level for detection by the base station. The subscriber unit quickly increases transmission power while repeatedly transmitting the short code until the signal is detected by the base station. Once the base station detects the short code, it sends an indication to the subscriber unit to cease increasing transmission power. The use of short codes limits power overshoot and interference to other subscriber units and permits the base station to quickly synchronize to the spreading code used by the subscriber unit.
Abstract:
At least one desired communication signal is received by a receiver. The at least one desired communication signal is transmitted in a wireless format of a cell. A plurality of communication signals are received. Communication signals are selected from the plurality. The selected communication signals include each desired communication signal and at least one communication signal originating from another cell. A channel estimate is produced for each selected communication signal. Data is jointly detected for the selected communication signals.