Abstract:
The present invention relates application of conformal coatings made up of nano-fiber, nano-particle, and/or nano-capsule materials to be applied on electrical component parts in general and printed circuit boards (PCB) in particular. A conformal coating material, such as Parlyne, can be combined with nano-materials to produce desired results. Benefits of this invention include enhancement of conventional conformal coatings performance in terms of properties such as mechanical, electrical, magnetic and in particular to prevent or obstruct the growth of tin whiskers or any other manufacturing defect that can develop on the surface of a PCB.
Abstract:
According to the present invention, there is provided a laminate (1A) including a substrate (2) and a layer (8) which is provided on the substrate (2) and contains a fiber filler (fiber piece) and a resin. The layer (8) is a paper-making sheet obtained by subjecting the fiber filler and the resin to paper-making.
Abstract:
Provided is a nanofiber sheet that sufficiently refined by fibrillation and has high crystallinity of cellulose fiber and can realize a fiber-reinforced composite material exhibiting high transparency, a high elastic modulus, a low coefficient of linear thermal expansion, and high heat resistance and being high in flatness and smoothness. This nanofiber sheet includes crystalline cellulose as the main component and a lignin in an amount of from 10 ppm to 10 wt %. When a fiber/resin composite material obtained by impregnating the nanofiber sheet with tricyclodecane dimethacrylate, subjecting the impregnated product to UV-curing at 20 J/cm2, and heating the cured product in vacuum at 160° C. for two hours includes 60 wt % of the cured tricyclodecane dimethacrylate and 40 wt % of nanofiber, the following physical characteristics (i) to (iii) are satisfied: (i) the parallel light transmittance of light of a wavelength of 600 nm at a sheet thickness of 100 μm is 70% or more; (ii) the Young's modulus is 5.0 GPa or more; and (iii) the coefficient of linear thermal expansion is 20 ppm/K or less.
Abstract:
A method and an apparatus for mitigating electrical failures caused by intrusive structures. Such structures can be tin whiskers forming on electrical circuits. In an illustrative embodiment, nano-capsules are filled with some type of insulative and adhesive fluid that is adapted to bind to and coat an intrusive structure, e.g., a whisker, making the whisker electrically inactive and thereby reducing the electrical faults that can be caused by the whisker. In another illustrative embodiment, randomly oriented nano-fibers having an elastic modulus higher than tin or any other whisker material is used to arrest a growth or movement of a whisker and further reduce a likelihood that a whisker can cause an electrical fault.
Abstract:
A composite material including an arrangement of approximately aligned nanofilaments overlying at least another arrangement of approximately aligned nanofilaments, the longitudinal axis of the nanotubes of the first arrangement being approximately perpendicular to the longitudinal axis of the nanotubes of the other arrangement, and the arrangements forming at least one array. A resin material having nanoparticles dispersed throughout is disposed among the array(s) of nanofilaments, and cured, and openings may be formed into or through the composite material corresponding to spaces provided in the array of nanofilaments. A composite material according to embodiments forms a microelectronic substrate or some portion thereof, such as a substrate core.
Abstract:
A composite material including an arrangement of approximately aligned nanofilaments overlying at least another arrangement of approximately aligned nanofilaments, the longitudinal axis of the nanotubes of the first arrangement being approximately perpendicular to the longitudinal axis of the nanotubes of the other arrangement, and the arrangements forming at least one array. A resin material having nanoparticles dispersed throughout is disposed among the array(s) of nanofilaments, and cured, and openings may be formed into or through the composite material corresponding to spaces provided in the array of nanofilaments. A composite material according to embodiments forms a microelectronic substrate or some portion thereof, such as a substrate core.
Abstract:
The invention relates to a composite material made up of at least one ceramic layer or at least one ceramic substrate and at least one metallization formed by a metallic layer on a surface side of the at least one ceramic substrate.
Abstract:
The present invention relates to a fiber-reinforced composite material and a method for manufacturing the same, and also relates to a transparent multilayered sheet, a circuit board, and an optical waveguide.
Abstract:
Disclosed is a light emitting diode unit, more particularly, a light emitting diode unit including a thermoplastic substrate, a light emitting diode, mounted on one surface of the thermoplastic substrate and a heat sink, directly adhered to the other surface of the thermoplastic substrate. With the present invention, the manufacturing cost and the manufacturing time of the light emitting diode unit can be reduced by allowing the heat sink, discharging the heat generated by the light emitting diode, to be directly adhered to the substrate on which the light emitting diode is mounted. Also, the heat discharging ability of the light emitting diode unit by using the heat sink directly adhered to the thermoplastic substrate.
Abstract:
The present invention relates to a fiber-reinforced composite material and a method for manufacturing the same, and also relates to a transparent multilayered sheet, a circuit board, and an optical waveguide.