Abstract:
A composition for forming transition vias and transition line conductors is disclosed for minimizing interface effects at electrical connections between dissimilar metal compositions. The composition has (a) inorganic components selected from the group consisting of (i) 20-45 wt % gold and 80-55 wt % silver and (ii) 100 wt % silver-gold solid solution alloys, and (b) an organic medium. The composition may also contain (c) 1-5 wt %, based upon the weight of the composition, of oxides or mixed oxides of metals selected from the group consisting of Cu, Co, Mg and Al and/or high viscosity glasses mainly containing refractory oxides. The composition may be used as a multi-layer composition in a via fill. Multi-layer circuits such as LTCC circuits and devices may also be formed using the composition for forming transition vias and transition line conductors.
Abstract:
Devices, systems, and methods for making and using circuit assemblies having a pattern of deformable conductive material formed therein are disclosed herein. In various aspects, a circuit assembly can include a substrate layer; a first pattern of deformable conductive material formed on a surface of the substrate layer using a removable stencil; and a first stacked layer configured to cover at least a portion of the first pattern of deformable conductive material.
Abstract:
A package structure includes a substrate having a bearing surface, an electronic component disposed on the bearing surface and having a first height, at least one heat conductor disposed on the bearing surface and having a second height, an encapsulant disposed on the bearing surface and having a side covering the electronic component and the at least one heat conductor and a third height, and a heat dissipation structure disposed on the encapsulant. The third height is greater than or equal to the first height and the second height. A surrounding area where the substrate is in contact with the electronic component is a heat-generating area, and the at least one heat conductor is disposed in the heat-generating area.
Abstract:
Devices, systems, and methods for making and using highly sustainable circuit assemblies are disclosed herein. In various aspects, the highly sustainable circuit assembly includes a substrate layer; and a pattern of contact points supported by the substrate layer. The pattern of contact points can be configured to correspond to at least one terminal of an electrical component. The pattern of contact points can include a deformable conductive material. The deformable conductive material can be a non-hazardous, readily reclaimable, readily recyclable material.
Abstract:
Devices, systems, and methods for making and using circuit assemblies having a pattern of deformable conductive material formed therein are disclosed herein. In various aspects, a circuit assembly can include a substrate layer; a first pattern of deformable conductive material formed on a surface of the substrate layer using a removable stencil; and a first stacked layer configured to cover at least a portion of the first pattern of deformable conductive material.
Abstract:
Disclosed is a method for manufacturing a wiring structure including a step of forming a wiring on an insulating resin layer. The step of forming the wiring includes: forming a modified region including pores in a surface layer of the insulating resin layer by treating a surface of the insulating resin layer with a treatment method including surface modification; forming a seed layer on the surface of the insulating resin layer by sputtering; and forming the wiring on the seed layer by electrolytic copper plating. The disclosed method may include, in this order: a step of forming a surface treatment agent layer that covers a surface of the wiring by treating the surface of the wiring with a surface treatment agent for improving adhesion; and a step of forming a modified region including pores in a surface layer of a first layer of the insulating resin layer by treating the surface of the first layer of the insulating resin layer with a treatment method including surface modification.
Abstract:
The present application provides a conductive paste and an electronic device, and relates to the technical field of function materials. The conductive paste according to the present application includes: a base resin, a solvent, a conductive filler, a curing agent, and an auxiliary agent. The base resin is a mixture of epoxy resin and polyurethane, a weight percentage of the epoxy resin in the base resin is greater than or equal to 50%, and the epoxy resin limits the polyurethane in a structure formed by curing of the base resin. According to the technical solution of the present application, soldering can be performed directly by solder paste, and good flexibility is brought.
Abstract:
An electrical conductor includes a substrate; and a first conductive layer disposed on the substrate and including a plurality of metal oxide nanosheets, wherein adjacent metal oxide nanosheets of the plurality of metal oxide nanosheets contact to provide an electrically conductive path between the contacting metal oxide nanosheets, wherein the plurality of metal oxide nanosheets include an oxide of Re, V, Os, Ru, Ta, Ir, Nb, W, Ga, Mo, In, Cr, Rh, Mn, Co, Fe, or a combination thereof, and wherein the metal oxide nanosheets of the plurality of metal oxide nanosheets have an average lateral dimension of greater than or equal to about 1.1 micrometers. Also an electronic device including the electrical conductor, and a method of preparing the electrical conductor.
Abstract:
The present invention relates to an electrical connection structure for a PCB and an electroplating frame, and a modular lamp. The modular lamp comprises a plurality of light-emitting modules. Each light-emitting module comprises a housing and a lamp plate arranged within the housing, a light source and conductive connectors electrically connected to the light source being arranged on the lamp plate, an outer side wall of the housing being provided with two sets of conductive strips surrounding the outer side wall and protruding from the outer side wall, the two sets of conductive strips being respectively electrically connected to two electrodes of the lamp plate via the conductive connectors. After the plurality of light-emitting modules have been assembled and joined together, adjacent light-emitting modules are in contact and electrically connected via the conductive strips. The modular lamp is provided with the plurality of light-emitting modules, the shapes of the light-emitting modules are flexible and variable, each module is designed independently, and after the light-emitting modules have been joined together, adjacent light-emitting modules are electrically connected via the conductive strips on the outer side walls and may be combined to form a variety of shapes. The present invention is simple in operation, and strong in combination operability.
Abstract:
The present invention relates to a composition for forming a conductive pattern which allows micro conductive patterns to be formed on various polymeric resin products or resin layers by a very simplified process, a method for forming a conductive pattern using the composition, and a resin structure having the conductive pattern. The composition for forming a conductive pattern comprises: a polymeric resin; and a nonconductive metallic compound including a first metal, a second metal and a third metal, wherein the nonconductive metallic compound has a three-dimensional structure including a plurality of first layers (edge-shared octahedral layers) having a structure in which octahedrons comprising two metals from among the first metal, the second metal and the third metal which share the edges thereof with one another are two-dimensionally connected to one other, and a second layer which includes a metal of a different type from the first layer and is arranged between adjacent first layers, and wherein a metallic core including the first metal, the second metal or the third metal or an ion thereof is formed from the nonconductive metallic compound by electromagnetic radiation.