Abstract:
An electrical contact pad for electrically contacting a connector includes first, second and third regions. The first region is connected to a trace. The second region is adjacent to the first region and has a width less than the first region. The third region is adjacent to the second region and has a width that is greater than the second region. The third region is sized to make contact with a connector. Having the width of the second region be smaller than the width of the first and third regions increases an impedance of the electrical contact pad.
Abstract:
Described are various configurations of high-speed via structures. Various embodiments can reduce or entirely eliminate insertion loss in high-speed signal processing environments by using impedance compensation structures that decrease a mismatch in components of a circuit. An impedance compensation structure can include a metallic structure placed near a via to lower an impedance difference between the via and a conductive pathway connected to the via.
Abstract:
A dual printed circuit board assembly, a printed circuit board, and a modular printed circuit board are provided. The printed circuit board includes a plurality of first connection points. The modular printed circuit board includes a plurality of second connection points. The modular printed circuit board is adapted to be mounted on the printed circuit board and includes a sensing unit, a first detecting unit, and a first notifying unit. The sensing unit outputs a detecting voltage according to a contact state between the first connection points and the second connection points. The first detecting unit determines whether the first connection points are respectively connected to the corresponding second connection points according to the detecting voltage. When one of the first connection points is not connected to the corresponding one of the second connection points, the first detecting unit controls the first notifying unit to issue a notification.
Abstract:
[Object] There is suggested a printed circuit board capable of realizing impedance matching by securing joint reliability between signal pins of a surface mount connector and signal pin pads and preventing the reduction of impedance of signal pin pads while minimizing the reduction of a wirable area.[Solution] A printed circuit board equipped with a signal pin pad, which is soldered to a signal pin from a surface mount connector, and a ground layer located as a lower layer below the signal pin pad; wherein a fillet is formed around a joint area between the signal pin and the signal pin pad after soldering; wherein a cut-out portion is provided in the signal pin pad within a joint area with the signal pin; and wherein the size of the cut-out portion is set within the range of being completely covered within the joint area with the signal pin based on size tolerance of the signal pin, fabrication tolerance of the printed circuit board, and mount position tolerance of the surface mount connector.
Abstract:
An electronic module includes a plurality of loads, a first wiring portion, a second wiring portion, a power source unit, and a feedback portion. The first wiring portion includes a plurality of first portions to which the plurality of loads are respectively connected, and a plurality of second portions each closest to a corresponding one of the plurality of first portions. The second wiring portion is connected to the plurality of second portions. The power source unit includes a feedback terminal, an output terminal, and a power source circuit. In the first wiring portion, a minimum path length from each of the plurality of second portions to the corresponding one of the plurality of first portions is smaller than 1/2 of a minimum path length from a part of the first wiring portion connected to the output terminal to the corresponding one of the plurality of first portions.
Abstract:
Vertical launch impedance matched through-hole vias to ensure proper impedance matching is maintained after a printed circuit board connector is attached to a printed circuit board. A conductive via having a center aperture and a via body having a slot adjacent either the via top surface and/or via bottom surface, and a dielectric component insertable within the via center aperture, and having a slot aligned with the conductive via body slot. The dielectric component having a center aperture with a conductive member in electrical communication with a PCB signal trace without contact to the conductive via. A printed circuit board connector having a center signal pin with a slotted dielectric component attached thereto, or a slotted dielectric component in conjunction with a slotted, conductive via body attached thereto.
Abstract:
Apparatuses and methods including conductive vias of a printed circuit board are described. An example apparatus includes a first layer including a first conductive plate; a component on the first layer, a second layer including a second conductive plate that may be coupled to an external power source; a third layer between the first layer and the second layer, the third layer including a third conductive plate; a first via coupling the first conductive plate to the second conductive plate; and a second via coupled to the first conductive plate. The first conductive plate includes a first portion coupled to the first via and the first conductive plate further includes a second portion coupled to the second via between the first portion and the component. The second via is coupled to either the second conductive plate or the third conductive plate.
Abstract:
Apparatuses and methods including conductive vias of a printed circuit board are described. An example apparatus includes a first layer including a first conductive plate; a component on the first layer, a second layer including a second conductive plate that may be coupled to an external power source; a third layer between the first layer and the second layer, the third layer including a third conductive plate; a first via coupling the first conductive plate to the second conductive plate; and a second via coupled to the first conductive plate. The first conductive plate includes a first portion coupled to the first via and the first conductive plate further includes a second portion coupled to the second via between the first portion and the component. The second via is coupled to either the second conductive plate or the third conductive plate.
Abstract:
Provided herein is a method for manufacturing a conductive transparent substrate, the method including forming a plurality of main electrodes on the substrate such that the main electrodes are distanced from one another; and forming a connecting electrode that electrically connects two or more main electrodes such that the plurality of main electrodes are grouped into a plurality of group electrodes that are electrically disconnected from one another, thereby producing a conductive transparent substrate with excellent transmittance in a process of high yield.
Abstract:
A package component includes a first substrate and a first conductive layer. The first substrate has a first surface and a second surface opposite to the first surface. The first conductive layer is disposed over the first surface of the first substrate. The first conductive layer includes a first conductive feature and a second conductive feature over the first conductive feature. The second conductive features covers a portion of the first conductive feature. A resistance of the second conductive feature is lower than a resistance of the second conductive feature. The first substrate includes a single-sided or a double-sided copper-clad laminate.