Abstract:
To provide a method of producing a multilayer printed wiring board that can be intended to have low-profile, light-weight and high-density wiring of a printed wiring board, and a multilayer printed wiring board produced by the method of producing a multilayer printed wiring board, the double-sided substrate is produced by the steps of forming an insulating resin layer on a metal foil; of forming a via hole in the insulating resin layer; of forming a first circuit pattern on the insulating resin layer and forming a conductive layer in the via hole, by plating; and of etching the metal foil to form it into a second circuit pattern. The produced double-sided substrate is used as a core substrate for producing multilayer printed wiring board by a laminate-en-bloc or a build-up method.
Abstract:
A circuitized semiconductor substrate comprising a layer of dielectric material having holes therethrough, a catalyst seed layer lining the walls of the holes along the surface of the dielectric material, and a nickel layer in the openings and a layer of copper above the nickel layer, along with a method for its fabrication. The invention also provides copper-nickel laminate PTH barrels and methods for their fabrication.
Abstract:
A circuitized semiconductor substrate comprising a layer of dielectric material having holes therethrough, a catalyst seed layer lining the walls of the holes along the surface of the dielectric material, and a nickel layer in the openings and a layer of copper above the nickel layer, along with a method for its fabrication. The invention also provides copper-nickel laminate PTH barrels and methods for their fabrication.
Abstract:
The present invention relates to a process for the manufacture of printed circuit boards. The method contemplates a novel processing sequence for this manufacturing process which method is particularly versatile in reducing the number of steps and variety of chemicals currently necessary to produce the circuit boards.
Abstract:
To provide a method of producing a multilayer printed wiring board that can be intended to have low-profile, light-weight and high-density wiring of a printed wiring board, and a multilayer printed wiring board produced by the method of producing a multilayer printed wiring board, the double-sided substrate is produced by the steps of forming an insulating resin layer on a metal foil; of forming a via hole in the insulating resin layer; of forming a first circuit pattern on the insulating resin layer and forming a conductive layer in the via hole, by plating; and of etching the metal foil to form it into a second circuit pattern. The produced double-sided substrate is used as a core substrate for producing multilayer printed wiring board by a laminate-en-bloc or a build-up method.
Abstract:
A method includes applying a first seed layer extending over a horizontal surface and via sidewalls of a dielectric material and exposed underlying contact metallization; removing at least some of the first seed layer from the contact metallization and the horizontal surface while leaving a sufficient amount of the first seed layer on the sidewalls as a catalyst for subsequent application of a third seed layer; sputtering a second seed layer over the contact metallization and the horizontal surface; using an electroless solution to react with the first seed layer and apply the third seed layer over the sidewalls; and electroplating an electroplated layer over the second and third seed layers.
Abstract:
As an electroless plating technique capable of surely promoting the plating reaction without Pd substitution reaction and fastening the plating deposition, there are proposed an electroless plating method of subjecting a primary plated film (or metal film) formed on a substrate to a secondary plating (or electroless plating), characterized in that the secondary plating is carried out after a surface potential of the primary plated film is adjusted so as to be more base than such a most base surface potential that a surface current density of the primary plated film is zero in an electroless plating solution for the secondary plating; and a pretreating solution for electroless plating comprising an alkali solution, reducing agent and completing agent; and an electroless plating bath suitable for use in this method.
Abstract:
A method includes applying a first seed layer extending over a horizontal surface and via sidewalls of a dielectric material and exposed underlying contact metallization; removing at least some of the first seed layer from the contact metallization and the horizontal surface while leaving a sufficient amount of the first seed layer on the sidewalls as a catalyst for subsequent application of a third seed layer; sputtering a second seed layer over the contact metallization and the horizontal surface; using an electroless solution to react with the first seed layer and apply the third seed layer over the sidewalls; and electroplating an electroplated layer over the second and third seed layers.
Abstract:
A method for interconnecting a multilayer metal network of an electronic circuit board is provided. In the method, the electronic circuit board is made up of a plurality of superimposed metal layers having an insulating layer disposed therebetween, wherein the material of the insulating layer is substantially inert to a catalytic activation bath and to chemical deposition of metal. A via hole is formed in the board having a first metal layer thereof as its bottom and traversing a second metal layer and using electroless deposition, metal is deposited in the via by growing the metal from the metal layers only.
Abstract:
A process for producing a printed wiring board characterized by forming a nickel layer by electroless plating and a copper layer formed thereon by electroless plating, or forming a copper undercoating layer before the nickel layer by electroless plating can produce printed circuit boards excellent in resistance to electrolytic corrosion and suitable for mounting parts in high density.