Abstract:
A styrenic composition including a polar modified styrenic co-polymer resulting from the polymerization of a combined mixture of at least one styrenic monomer and at least one comonomer and a biodegradable component is disclosed. The at least one comonomer includes a polar functional group and the polar modified styrenic co-polymer and the biodegradable component are combined to obtain a styrenic composition having a biodegradable component. Also disclosed is a method of enhancing bio-polymer miscibility in a styrenic based polymer. The polarity of a blend is manipulated by combining a styrenic monomer and a polar co-monomer to form a combined mixture and subjecting the combined mixture to polymerization to obtain a styrenic polymer blend to which a bio-polymer is added.
Abstract:
A composition can include a polyolefin, a styrenic polymer, or a polylactic acid. The composition can include a metallic acrylate salt. A method of making a composition can include melt mixing a polyolefin, a styrenic polymer, or a polylactic acid with a metallic acrylate salt.
Abstract:
A method of making a catalyst containing nanosize zeolite particles supported on a support material is disclosed. A process for making styrene or ethylbenzene by reacting toluene with a C1 source over a catalyst containing nanosize zeolite particles supported on a support material is disclosed.
Abstract:
A method of preparing a polystyrene blend that includes combining a first polystyrene composition having a first melt flow index with a second polystyrene composition having a second melt flow index and forming a polystyrene blend, the second melt flow index being at least 2 dg/min higher that the first melt flow index. The polystyrene blend has an observed tensile strength value greater than 3% above the expected tensile strength value. The second polystyrene composition can include a recycled polystyrene material, which can include expanded polystyrene. An alternate method of preparing the polystyrene blend includes combining a polystyrene composition with a styrene monomer to form a reaction mixture, polymerizing the reaction mixture and obtaining a polystyrene blend, where the polystyrene containing composition has a melt flow index at least 2 dg/min higher than the melt flow index of the styrene monomer after it has been polymerized.
Abstract translation:一种制备聚苯乙烯共混物的方法,其包括将具有第一熔体流动指数的第一聚苯乙烯组合物与具有第二熔体流动指数的第二聚苯乙烯组合物组合并形成聚苯乙烯共混物,所述第二熔体流动指数至少为2dg / min 第一个熔体流动指数。 聚苯乙烯共混物的观测拉伸强度值大于预期拉伸强度值的3%以上。 第二聚苯乙烯组合物可以包括再循环的聚苯乙烯材料,其可以包括发泡聚苯乙烯。 制备聚苯乙烯共混物的替代方法包括将聚苯乙烯组合物与苯乙烯单体组合以形成反应混合物,使反应混合物聚合并获得聚苯乙烯共混物,其中含聚苯乙烯的组合物的熔体流动指数至少为2dg / min 比苯乙烯单体聚合后的熔体流动指数高。
Abstract:
Injection stretch blow molded (ISBM) articles containing a bio-based polymers and methods of forming the same are described herein. The method generally includes providing a propylene-based polymer; contacting the propylene-based polymer with polylactic acid to form a polymeric blend; injection molding the blend into a preform; and stretch-blowing the preform into an article.
Abstract:
A process for making styrene including providing a C1 source to a reactor containing a catalyst and reacting toluene with the C1 source in the presence of the catalyst to form a product stream comprising ethylbenzene and styrene. The C1 source can be selected from the group of methanol, formaldehyde, formalin, trioxane, methylformcel, paraformaldehyde, methylal, dimethyl ether, and combinations thereof, and wherein the catalyst contains a nitrogen-substituted zeolite.
Abstract:
A method comprising contacting at least one metal salt of an organic acid with at least one aromatic compound in a reaction zone under conditions suitable for the formation of a polymer, wherein the metal salt of an organic acid comprises a metal and at least one unsaturated organic acid moiety. A composition comprising polystyrene and a metal salt of cinnamic acid. An article made from a composition comprising polystyrene and a metal salt of cinnamic acid. A composition comprising polystyrene and a salt of a fatty acid. An article made from a composition comprising polystyrene and a salt of a fatty acid.
Abstract:
The present invention provides a dispersing agent that facilitates the delivery of a cross-linking agent to polymer modified asphalt. The present invention further includes a composition comprising a liquid hydrocarbon, the dispersant and cross-linking agent, and methods of preparing the composition and of preparing cross-linked polymer modified asphalt composition.
Abstract:
A system for pressurizing a propylene polymerization reactor includes: a pressurization vessel including an internal heat exchanger; a pressure sensor for monitoring the pressure in the vessel, the pressure sensor providing a signal indicative of the pressure in the vessel; a control valve for supplying heated gas to a first region of the vessel in response to signals from the pressure sensor, the first region of the vessel being maintained above the critical temperature and pressure of propylene; a temperature sensor for monitoring the temperature in a second region of the pressurization vessel, the temperature sensor providing a signal indicative of the temperature in the second region of the vessel; and a control valve for supplying a cooling medium to the internal heat exchanger to cool propylene in the second region below the critical temperature of propylene at the pressure in the pressurization vessel.
Abstract:
Disclosed is a polymeric composition that can include at least 95 wt. % of a polypropylene copolymer, and 50 ppm to 2000 ppm of an aryl amide containing clarifying agent, a phosphate ester salt containing clarifying agent, or a combination thereof. The polymeric composition can have a haze value of A after being extruded once and a haze value of B after being extruded 2 times, wherein the ratio of A to B is 1 to 1.35, wherein A is less than 25%, and wherein A and B are determined in accordance with ASTM D1003, at a thickness of about 40 mil.