Abstract:
A semiconductor structure is provided, including a substrate, a plurality of first semiconductor devices, a plurality of second semiconductor devices, and a plurality of dummy slot contacts. The substrate has a device region, wherein the device region includes a first functional region and a second functional region, and a dummy region is disposed therebetween. The first semiconductor devices and a plurality of first slot contacts are disposed in the first functional region. The second semiconductor devices and a plurality of second slot contacts are disposed in the second functional region. The dummy slot contacts are disposed in the dummy region.
Abstract:
A semiconductor device structure having at least one thin-film resistor structure is provided. Through the metal plug(s) or metal wirings located on different layers, a plurality of stripe segments of the thin-film resistor structure is electrically connected to ensure the thin-film resistor structure with the predetermined resistance and less averting areas in the layout design.
Abstract:
The present invention provides a method of forming a semiconductor structure including a substrate, a transistor, a first ILD layer, a second ILD layer, a first contact plug, second contact plug and a third contact plug. The transistor is disposed on the substrate and includes a gate and a source/drain region. The first ILD layer is disposed on the transistor. The first contact plug is disposed in the first ILD layer and a top surface of the first contact plug is higher than a top surface of the gate. The second ILD layer is disposed on the first ILD layer. The second contact plug is disposed in the second ILD layer and electrically connected to the first contact plug. The third contact plug is disposed in the first ILD layer and the second ILD layer and electrically connected to the gate.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a plurality of gate structures on the substrate; forming a first stop layer on the gate structures; forming a second stop layer on the first stop layer; forming a first dielectric layer on the second stop layer; forming a plurality of first openings in the first dielectric layer to expose the second stop layer; forming a plurality of second openings in the first dielectric layer and the second stop layer to expose the first stop layer; and removing part of the second stop layer and part of the first stop layer to expose the gate structures.
Abstract:
A method for fabricating a semiconductor device includes the following steps. First, a first interlayer dielectric is formed on a substrate. Then, a gate electrode is formed on the substrate so that the periphery of the gate electrode is surrounded by the first interlayer dielectric. Afterwards, a patterned mask layer is formed on the gate electrode, and a bottom surface of the patterned mask layer is level with a top surface of the first interlayer dielectric. A spacer is then formed on each sidewall of the gate electrode. Subsequently, a second interlayer dielectric is formed to cover a top surface and each side surface of the patterned mask layer. Finally, a self-aligned contact structure is formed in the first interlayer dielectric and the second interlayer dielectric.
Abstract:
A manufacturing method for a semiconductor device includes providing a substrate having at least agate structure formed thereon and a first spacer formed on sidewalls of the gate structure, performing an ion implantation to implant dopants into the substrate, forming a disposal spacer having at least a carbon-containing layer on the sidewalls of the gate structure, the carbon-containing layer contacting the first spacer, and performing a thermal treatment to form a protecting layer between the carbon-containing layer and the first spacer.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having at least one metal gate thereon, a source/drain region adjacent to two sides of the at least one metal gate, and an interlayer dielectric (ILD) layer around the at least one metal gate; forming a plurality of contact holes in the ILD layer to expose the source/drain region; forming a first metal layer in the contact holes; performing a first thermal treatment process; and performing a second thermal treatment process.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a gate structure thereon and an interlayer dielectric (ILD) layer around the gate structure; forming a dielectric layer on the gate structure and the ILD layer; forming a patterned hard mask on the dielectric layer; forming an opening in the dielectric layer and the ILD layer; performing a silicide process for forming a silicide layer in the opening; removing the patterned hard mask and un-reacted metal after the silicide process; and forming a contact plug in the opening.
Abstract:
The present invention provides a semiconductor structure including a substrate, a transistor, a first ILD layer, a second ILD layer, a first contact plug, second contact plug and a third contact plug. The transistor is disposed on the substrate and includes a gate and a source/drain region. The first ILD layer is disposed on the transistor. The first contact plug is disposed in the first ILD layer and a top surface of the first contact plug is higher than a top surface of the gate. The second ILD layer is disposed on the first ILD layer. The second contact plug is disposed in the second ILD layer and electrically connected to the first contact plug. The third contact plug is disposed in the first ILD layer and the second ILD layer and electrically connected to the gate. The present invention further provides a method of making the same.
Abstract:
A semiconductor structure includes a metal gate, a second dielectric layer and a contact plug. The metal gate is located on a substrate and in a first dielectric layer, wherein the metal gate includes a work function metal layer having a U-shaped cross-sectional profile and a low resistivity material located on the work function metal layer. The second dielectric layer is located on the metal gate and the first dielectric layer. The contact plug is located on the second dielectric layer and in a third dielectric layer, thereby a capacitor is formed. Moreover, the present invention also provides a semiconductor process forming said semiconductor structure.