Abstract:
A method for controlling a robot cleaner includes: detecting a cleaning target space, setting a cleaning region within the detected cleaning space and cleaning the set cleaning region; if the set cleaning region is completely cleaned, moving to a not-yet-cleaned region adjacent to a cleaning completion spot of the cleaning region; and setting a new cleaning region in the not-yet-cleaned region and performing cleaning. Without repeating a cleaning region in the cleaning target space, the robot cleaner can extend its cleaning region, so the cleaning efficiency of the robot cleaner can be improved. Also, the robot cleaner can be smoothly enter a new cleaning target space or released therefrom. In particular, even when the entrance of the new cleaning target space is narrow, the robot cleaner can smoothly enter the new cleaning target space and gets out thereof.
Abstract:
A powered sweeper includes a housing, a brushroll chamber disposed in the housing, a brushroll mounted in a brushroll chamber, a dirt chamber disposed in the housing, a drive motor disposed in the housing, and a driven wheel operatively connected to the drive motor. The brushroll rotates in the brushroll chamber and the dirt chamber communicates with the brushroll chamber such that debris is propelled by the brushroll into the dirt chamber.
Abstract:
A robot cleaner that travels straight through alignment of drive wheels to move the robot cleaner and a method of controlling travel of the same. Information related to a movement angle of the robot cleaner is detected from angle information of a caster wheel rotating depending upon a state of a floor, such as a carpet in a state in which texture of the carpet occurs in one direction, and, when the movement angle of the robot cleaner deviates due to slippages of the drive wheels, rates of rotation of the drive wheels are adjusted to correct the slippages of the drive wheels such that the robot cleaner easily travels straight.
Abstract:
A floor cleaning robot includes a housing having an underside, a substantially semi-circular front portion, and a substantially semi-circular rear portion. A displaceable bumper of a substantially semi-circular leading edge is located along a front portion of the housing. A leading wheel is mounted on the underside of the housing located adjacent to a mid-point of the semi-circular leading edge, and a battery pack cover is positioned rearwardly of the leading wheel and covers a battery pack that supplies power to the robot. At least two drive wheels are positioned rearwardly of the leading wheel, and at least one main brush is positioned rearwardly of the at least two drive wheels and is configured to rotate about an axis substantially parallel to the underside. The floor cleaning robot also includes at least one side brush having at least two arms extending outwardly from a central hub located in a recess in the underside of the housing, the at least one side brush being attached to the hub such that rotation of the hub causes the brush to direct debris from a floor surface beyond the semi-circular leading edge of the robot housing for collection by the robot. An ejectable dust bin is provided that has a surface forming at least a portion of a semi-circular trailing edge of the housing.
Abstract:
A piezoelectric debris sensor and associated signal processor responsive to debris strikes enable an autonomous or non-autonomous cleaning device to detect the presence of debris and in response, to select a behavioral mode, operational condition or pattern of movement, such as spot coverage or the like. Multiple sensor channels (e.g., left and right) can be used to enable the detection or generation of differential left/right debris signals and thereby enable an autonomous device to steer in the direction of debris.
Abstract:
A piezoelectric debris sensor and associated signal processor responsive to debris strikes enable an autonomous or non-autonomous cleaning device to detect the presence of debris and in response, to select a behavioral mode, operational condition or pattern of movement, such as spot coverage or the like. Multiple sensor channels (e.g., left and right) can be used to enable the detection or generation of differential left/right debris signals and thereby, enable an autonomous device to steer in the direction of debris.
Abstract:
A robot cleaner with a pivotable brush which pivots in accordance with a condition of a floor surface to be cleaned. The pivotal brush prevents overload to a suction motor caused by excessive contact of the brush with the floor surface to be cleaned. The robot cleaner includes a robot cleaner body with a hinge receiving portion, a brush frame with a hinge protrusion pivotally connected to the hinge receiving portion, and a suction port sealingly connected with the dust suction portion of the robot cleaner body. A brush cover is detachable from the brush frame via a brush cover locking mechanism. A rotatable brush is rotatably disposed between the brush frame and the brush cover.
Abstract:
A piezoelectric debris sensor and associated signal processor responsive to debris strikes enable an autonomous or non-autonomous cleaning device to detect the presence of debris and in response, to select a behavioral mode, operational condition or pattern of movement, such as spot coverage or the like. Multiple sensor channels (e.g., left and right) can be used to enable the detection or generation of differential left/right debris signals and thereby enable an autonomous device to steer in the direction of debris.
Abstract:
An apparatus applies dressing fluid to a bowling lane surface in a discrete pattern laterally across a plurality of zones on the bowling lane. A carriage, for movement along a bowling lane, has an applicator mounted thereon for applying the dressing fluid to the bowling lane surface. Dressing fluid is supplied from a reservoir by means off a plurality of pulse valves which supply the dressing fluid to a plurality of fluid dispersion chambers, each having an inlet connected to one of the pulse valves and having an outlet positioned to apply dressing fluid to the applicator. The outlet has a width equal to the width of one of the zones. A controller is provided for selectively activating each of the pulse valves to discharge a discrete amount of fluid dressing into each dispersion chamber. Each zone may be the width of one board across the bowling alley so that different discrete amounts of oil can be applied to each board. A method is provided to supply discrete amounts of bowling lane dressing to each of a plurality of zones wherein each zone is one board width or portion of a board width.
Abstract:
An automatic window washer has a module riding in tracks on the face of the building and is controlled from a unit mounted on the roof of the building. As the module moves down the face of the building the presence of areas to be washed is automatically sensed and the washing operations then automatically begun and terminated by equipment in the module. The module or modules may be mounted in a span frame for lateral movement therein for washing more than one vertical column of windows when the tracks on the face of the building are spaced apart by a plurality of columns of windows. The washing equipment in the module may take various forms for washing windows of curtain front buildings and for washing recessed windows.