Abstract:
Provided is a self-moving cleaning device, including a shell, a water tank, a groove, and a roller assembly. A mounting part is arranged at the bottom of the shell; the water tank is detachably mounted on the mounting part; the groove is provided in the mounting part and/or the groove is provided in the water tank at a position cooperating with the mounting part; and the roller assembly is mounted on the mounting part and can extend and retract. When the water tank is mounted on the shell, the roller assembly retracts into the groove and is in a retracted state, and when the water tank is removed from the shell, the roller assembly is in an extended state.
Abstract:
A cleaning robot includes a cleaning element, which is configured to be in contact with a surface to be cleaned and form a chamber with the surface to be cleaned; a suction module; a driving module, which is connected with the cleaning element and drives the cleaning element to rotate with the axis perpendicular to the surface to be cleaned as the rotation axis; a controller, which is coupled to and controls the suction module and the driving module; and a bridge, which connects a plurality of cleaning elements and the driving module, wherein at least one of the cleaning elements is configured to be able to deflect with respect to the bridge, so as to enable the rotation axis corresponding to the cleaning element to be staggered with the rotation axes corresponding to other cleaning elements to form an included angle.
Abstract:
Disclosed is a surface cleaning robot and a process for manufacturing a track thereof. The surface cleaning robot includes a body, where a walking unit is provided at the bottom of the body, the walking unit includes a track and a gear driving the track, the track includes a hard layer in the inner ring engaging with the gear and a soft layer in the outer ring contacting a cleaning surface, and the hard layer and the soft layer are nested and combined as a whole. The present disclosure adopts a composite track that closely nests and combines inner and outer rings of different materials.
Abstract:
A planar surface cleaning system including a main body, at least one vacuum source, and a cleaning component is disclosed. The main body includes a bottom portion, wherein the bottom portion defines an outer portion defining a surface area about a perimeter thereof and an inner portion defining a cavity formed within the outer portion. The at least one vacuum source is supported by the main body and is in fluid communication with the cavity. The cleaning component covers the surface area defined on the outer portion and is removably connected to the outer portion. The planar surface cleaning system further includes a handle portion. The handle portion may be connected to the main body via a U portion.
Abstract:
A window-cleaning robot that includes: a powered agitator that, when active, mechanically removes debris from a window surface; a cleaning pad, which is wetted with a cleaning fluid and contacts the window surface so as to remove debris therefrom with the aid of the cleaning fluid; and a movement system, for example including a number of wheels, which moves the robot over the window surface and has a defined forwards direction; the agitator is located forwards of the cleaning pad and the agitator and the cleaning pad are arranged such that, as the robot moves over the window surface in the forwards direction, the agitator addresses a width in a width direction, which is perpendicular to the forwards direction and parallel to the window surface, that is greater than the width addressed by the cleaning pad.
Abstract:
An air-releasing valve for use in a suction apparatus and a suction robot having the air-releasing valve are provided. The air-releasing valve comprises an activation unit and an air-releasing valve retaining base (3). An air-releasing hole (11) in communication with a negative pressure chamber (18) of the suction apparatus is provided on the air-releasing valve retaining base (3). The activation unit is provided on the air-releasing valve retaining base (3) and is movable relative to the air-releasing valve retaining base (3) to open the air-releasing hole (11). A switch (4) is provided on the air-releasing valve retaining base (3). The activation unit opens the air-releasing hole (11) and triggers the switch (4) to shut off a vacuuming apparatus (14) of the suction apparatus simultaneously. The air-releasing valve is capable of rapidly releasing air from the suction apparatus and shutting off the vacuuming apparatus (14) in a timely manner.
Abstract:
A crankshaft-type vacuum air pump comprising a drive motor (1), an air pump main body (2), and piston air pump components (3) arranged on the air pump main body (2). A crankshaft unit is arranged within the air pump main body (2). The top of the crankshaft unit is connected to the air pump main body (2) via an upper eccentric wheel (4), while the end is connected to the drive motor (1) via a lower eccentric wheel (5). The drive motor (1) outputs power to rotate the crankshaft unit. The crankshaft unit is connected to the piston air pump components (3) and drives the piston air pump components into motion, thus completing air intake and air discharge of the piston air pump components (3). The air pump is structurally simple and compact, the crankshaft per se is centrosymmetric, and one or more crankshaft units are made to serve as a rotary shaft, where the overall center of gravity during rotation is always located at the center of rotation and no vibration is caused by a centrifugal force. The rotary shaft is subjected to the force of piston rods on two sides that are always symmetric relative to the center of rotation, thus the rotary shaft is subjected to a radial force that is basically zero, the problem of vibration caused by unbalanced stress during rotation is greatly reduced, and a stable working state is allowed.
Abstract:
The object of the invention is to therefore create an automated and versatile autonomously climbing undercarriage with flight capability that automatically reaches a suitable area for cleaning purposes, repair purposes, and monitoring purposes without being constantly connected to a supply station or base station in the process, and that independently goes to the surface of the facade and independently moves along the surface and away from the surface.The automated and versatile autonomously climbing undercarriage (1) with vacuum suction units (2) as per the invention involves a multicopter (3) with two, three or more rotors (11) or propellers (11) attached to the autonomously climbing undercarriage (1).
Abstract:
A glass cleaning robot outage emergency processing method comprises the following steps: Step 100 in which a glass cleaning robot (1) operates in an external power supply power-on mode, and is automatically switched to a built-in battery power-on mode when the external power supply suddenly suffers outage; Step 200 in which a control unit controls the glass cleaning robot (1) to walk downward; Step 300 in which when a collision board of the glass cleaning robot (1) collides with a barrier or when the glass cleaning robot (1) walks and reaches an edge of a glass, a sensing unit transfers a signal to the control unit; and Step 400 in which the control unit controls the glass cleaning robot (1) to give an alarm. According to the glass cleaning robot outage emergency processing method, when the external power supply suddenly suffers outage, the power-on mode is switched in time, and the glass cleaning robot is controlled to walk downward and to give an alarm according to different situations, hereby effectively preventing the glass cleaning robot from falling due to the outage.
Abstract:
A glass-wiping robot having an air-venting device (b 5), comprising a machine body (b 1). The machine body (b 1) has arranged thereon a suction cup device (b 2). The suction cup device (b 2) is connected to a vacuum air pump (b 4) via an airway pipe (b 3). The glass-wiping robot is adsorbed on a surface of a glass via the suction cup device (b 2). The suction cup device (b 2) is also connected to an air-venting device (b 5). The air-venting device (b 5) is provided with opened and closed positions. When the air-venting device (b 5) is at the opened position, the suction cup device (b 2) is in communication with the atmosphere via the air-venting device (b 5). The glass-wiping robot has the air-venting device (b 5) arranged on the airway pipe (b 3) between the vacuum air pump (b 4) and the suction cup device (b 2), wherein when a handle (b 51) is pulled up, a positioning rotary shaft (b 53) rotates to trigger an air-venting valve (b 52), and the air-venting valve (b 52) opens an air-venting hole therein to allow the interior of the suction cup to be in communication with the atmosphere, thus an equilibrium between internal and external air pressures is achieved rapidly, the glass-wiping robot can be removed rapidly without having to wait, and the work efficiency is increased.