Abstract:
A method with an Unmanned Aerial Vehicle (UAV) associated with a cell site includes causing the UAV to fly at or near the cell site, wherein the UAV comprises one or more manipulable arms which are stationary during flight; physically connecting the UAV to a structure at the cell site and disengaging flight components associated with the UAV; and performing one or more functions via the one or more manipulable arms while the UAV is physically connected to the structure, wherein the one or more manipulable arms move while the UAV is physically connected to the structure.
Abstract:
A data gathering system associated with a machine operating at a worksite is provided. The data gathering system includes a base station located at the worksite and an unmanned aerial device (UAD) in communication with the base station and the machine. The UAD includes an image capturing unit for capturing images of an area around the machine and a controller in communication with the image capturing unit. The controller receives a first input from the machine indicative of one or more machine parameters, and receives a second input from the image capturing unit indicative of the images of the area around the machine. The controller further determines multiple operational parameters associated with an operation of the machine based on the first input and the second input, and transmits the determined multiple operational parameters to at least one of the machine and the base station.
Abstract:
Disclosed is a system and method for facilitating testing of a plurality of devices using a drone. At first, a locating module locates position of the drone relative to the plurality of devices. Further, a receiving module receives an image, of a device of the plurality of devices, from image capturing unit of the drone. Then, a comparing module compares the image with a reference image corresponding to the device. Based on the comparison, a determining module determines an action to be performed for testing the device. Further, a facilitating module facilitates the testing by enabling a snout associated with the drone to perform the action on the device.
Abstract:
Some embodiments include a surface surveying device, in particular profiler or 3D scanner, for determining a multiplicity of 3D coordinates of measurement points on a surface, comprising a scanning unit and means for determining a position and orientation of the scanning unit, a carrier for carrying the scanning unit and at least part of the means for determining a position and orientation, and a control and evaluation unit with a surface surveying functionality. The carrier is embodied as an unmanned aerial vehicle which is capable of hovering and comprises a lead, the latter being connected at one end thereof to the aerial vehicle and able to be held at the other end by a user, wherein the lead is provided for guiding the aerial vehicle in the air by the user and the position of the aerial vehicle in the air is predetermined by the effective length of the lead.
Abstract:
This disclosure describes systems and processes using multirotor lifter to deploy and/or engage fixed wing aircraft. For example, one or more unmanned multirotor lifters may engage an unmanned fixed wing aircraft, aerially navigate the fixed wing aircraft vertically to a desired altitude, and then release the fixed wing aircraft so that the fixed wing aircraft can initiate a flight plan. In some implementations, multirotor lifter may also be configured to engage fixed wing aircraft while both the multirotor lifters and the fixed wing aircraft are in flight.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for an unmanned aerial system inspection system. One of the methods is performed by a UAV and includes receiving, by the UAV, flight information describing a job to perform an inspection of a rooftop. A particular altitude is ascended to, and an inspection of the rooftop is performed including obtaining sensor information describing the rooftop. Location information identifying a damaged area of the rooftop is received. The damaged area of the rooftop is traveled to. An inspection of the damaged area of the rooftop is performed including obtaining detailed sensor information describing the damaged area. A safe landing location is traveled to.
Abstract:
An unmanned aerial vehicle (UAV) which in some embodiments may comprise a fuselage which includes a cavity formed by an interior cavity wall and a fuselage exterior wall, with the cavity disposed within the fuselage. A first electronic module may be electrically coupled to a first magnetic connector and a second electronic module may be electrically coupled to a second magnetic connector. Electronic communication between the first and second modules may be provided by contact between the first magnetic connector and the second magnetic connector. In further embodiments, when removably positioned adjacent to each other in the cavity, the first magnetic connector may contact the second magnetic connector to establish electronic communication between the first and second modules.
Abstract:
Systems and methods using an Unmanned Aerial Vehicle (UAV) to perform physical functions on a cell tower at a cell site include flying the UAV at or near the cell site, wherein the UAV comprises one or more manipulable members; moving the one or more manipulable members when proximate to a location at the cell tower where the physical functions are performed to effectuate the physical functions; and utilizing one or more counterbalancing techniques during the moving ensuring a weight distribution of the UAV remains substantially the same.
Abstract:
A method with an Unmanned Aerial Vehicle (UAV) associated with a cell site includes causing the UAV to fly at or near the cell site, wherein the UAV comprises one or more manipulable arms which are stationary during flight; physically connecting the UAV to a structure at the cell site and disengaging flight components associated with the UAV; and performing one or more functions via the one or more manipulable arms while the UAV is physically connected to the structure, wherein the one or more manipulable arms move while the UAV is physically connected to the structure.
Abstract:
A drone system includes a drone that includes a propulsion system, a flight stabilizer system, and an air payload interface unit, and a camera system, wherein the camera system includes a camera stabilizing unit, and a ground support system to which the drone is detachably coupled through a tether unit, and for providing electrical power to the propulsion system. The drone system further includes a ground payload interface unit for receiving and transmitting command and telemetry information to the air payload interface unit through the tether unit, and a controlling device for controlling the propulsion system and the camera system through the tether unit.