Abstract:
Autonomous micro air vehicles surveillance systems are provided. A MAV system of one embodiment includes an MAV and a launch pad. The MAV has an engine that is adapted to power the MAV. The launch pad has a starter that is adapted to start the engine in the MAV when the MAV is resting on a launching surface of the launch pad. The launch pad further has a battery to power the starter.
Abstract:
Methods and systems for starting propeller driven aircraft and other devices are disclosed. A system in accordance with one embodiment of the invention includes a removable fixture that is coupled to the propeller and has at least one portion exposed to a flowstream to rotate the propeller during engine start-up. The fixture is configured to separate from the propeller after the engine begins to turn over (e.g., after the engine starts and/or rotates above a threshold rate). Accordingly, the system can include a releasable link between the fixture and the propeller.
Abstract:
Methods and apparatuses for launching, capturing, and storing unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be assembled from a container with little or no manual engagement by an operator. The container can include a guide structure to control motion of the aircraft components. The aircraft can be launched from an apparatus that includes an extendable boom. The boom can be extended to deploy a recovery line to capture the aircraft in flight. The aircraft can then be returned to its launch platform, disassembled, and stored in the container, again with little or no direct manual contact between the operator and the aircraft.
Abstract:
Methods and apparatuses for launching and capturing unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be launched from an apparatus that includes an extendable boom. The boom can be extended to deploy a recovery line to retrieve the aircraft in flight. The aircraft can then be retrieved from the recovery line. The boom can be retracted when not in use to reduce the volume it occupies.
Abstract:
Methods and apparatuses for launching, capturing, and storing unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be assembled from a container with little or no manual engagement by an operator. The container can include a guide structure to control motion of the aircraft components. The aircraft can be launched from an apparatus that includes an extendable boom. The boom can be extended to deploy a recovery line to capture the aircraft in flight. The aircraft can then be returned to its launch platform, disassembled, and stored in the container, again with little or no direct manual contact between the operator and the aircraft.
Abstract:
Methods and apparatuses for launching unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be launched from an apparatus that includes an extendable boom. A launch carriage is positioned on a launch guide structure of the boom and carries the aircraft during takeoff. An energy reservoir is configured to provide energy to the launch carriage during takeoff of the aircraft, and can absorb energy from the launch carriage to decelerate the launch carriage after takeoff. The apparatus can further include a transmission that smoothly and rapidly accelerates and/or decelerates the launch carriage.
Abstract:
Methods and apparatuses for capturing and recovering unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be captured at an extendable boom. The boom can be extended to deploy a recovery line to retrieve the aircraft in flight. The boom can be retracted when not in use to reduce the volume it occupies. A tension device coupled to the recovery line can absorb forces associated with the impact of the aircraft and the recovery line.
Abstract:
Methods and systems for starting propeller driven aircraft and other devices are disclosed. A system in accordance with one embodiment of the invention includes a removable fixture that is coupled to the propeller and has at least one portion exposed to a flowstream to rotate the propeller during engine start-up. The fixture is configured to separate from the propeller after the engine begins to turn over (e.g., after the engine starts and/or rotates above a threshold rate). Accordingly, the system can include a releasable link between the fixture and the propeller.
Abstract:
An aircraft adapted for flight in helicopter mode with its longitudinal axis oriented generally vertically and in airplane mode with its longitudinal axis oriented generally horizontally is provided with the capability of launching and landing with the tail end directed skyward. The invention also includes improvements to the controllability and efficiency of aircraft in helicopter mode provided by the stabilizer wings and relative rotation of the fuselage section about the aircraft's longitudinal axis. The aircraft has an elongate boom positioned between the rear fuselage and the stabilizer wings for engagement with a base structure. The base structure may be attached to a building, a trailer transporter, a ship or some other structure. The base may be a beam having latching arms that swing inward when pressure from the boom is applied, then trap the boom in a recess between the latching arm and beam, thereby suspending the aircraft. An actuator for releasing the latching arms is provided to allow the aircraft to launch.
Abstract:
The present invention relates to a point landing method for a flying object, e.g., an aircraft (manned or unmanned), a helicopter, a missile, in a location which may be stationary, e.g., a ground plot or the roof of a building or a moving one, e.g., a car, ship, train.