Abstract:
A nonvolatile nano-electromechanical system device is provided and includes a cantilever structure, including a beam having an initial shape, which is supported at one end thereof by a supporting base and a beam deflector, including a phase change material (PCM), disposed on a portion of the beam in a non-slip condition with a material of the beam, the PCM taking one of an amorphous phase or a crystalline phase and deflecting the beam from the initial shape when taking the crystalline phase.
Abstract:
A micro-electrochemical sensor contains magnetic compounds inserted within a substrate that exert a magnetic force of attraction on paramagnetic beads held in contact with an electrode. The magnetic compounds can be contained within a fluid that is introduced into a void in the substrate. The electrode can be spaced apart from the magnetic compounds by a dielectric multi-layer membrane. During the fabrication process, different layers within the membrane-electrode structure can be tuned to have compressive or tensile stress so as to maintain structural integrity of the membrane, which is thin compared with the size of the void beneath it. During a process of forming the structure of the sensor, the tensile stress in a TiW adhesion layer can be adjusted to offset a composite net compressive stress associated with the dielectric layers of the membrane. The membrane can also be used in forming both the electrode and the void.
Abstract:
A method for manufacturing a multi-layer substrate structure such as a CSOI wafer structure (cavity-SOI, silicon-on-insulator) comprising obtaining a first and second wafer, such as two silicon wafers, wherein at least one of the wafers may be optionally provided with a material layer such as an oxide layer (302, 404), forming a cavity on the bond side of the first wafer (306, 406), depositing, preferably by ALD (Atomic Layer Deposition), a material layer, such as thin alumina layer, on either wafer arranged so as to at least in places face the other wafer and cover at least portion of the cavity of the first wafer, such as bottom, wall and/or edge thereof, and enable stopping etching, such as dry etching, into the underlying material (308, 408), and bonding the wafers provided with at least the aforesaid ALD layer as an intermediate layer together to form the multi-layer semiconductor substrate structure (310, 312). A related multi-layer substrate structure is presented.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes patterning a wiring layer to form at least one fixed plate and forming a sacrificial material on the wiring layer. The method further includes forming an insulator layer of one or more films over the at least one fixed plate and exposed portions of an underlying substrate to prevent formation of a reaction product between the wiring layer and a sacrificial material. The method further includes forming at least one MEMS beam that is movable over the at least one fixed plate. The method further includes venting or stripping of the sacrificial material to form at least a first cavity.
Abstract:
This disclosure provides systems, methods and apparatus for controlling a mechanical layer. In one aspect, an electromechanical systems device includes a substrate and a mechanical layer positioned over the substrate to define a gap. The mechanical layer is movable in the gap between an actuated position and a relaxed position, and includes a mirror layer, a cap layer, and a dielectric layer disposed between the mirror layer and the cap layer. The mechanical layer is configured to have a curvature in a direction away from the substrate when the mechanical layer is in the relaxed position. In some implementations, the mechanical layer can be formed to have a positive stress gradient directed toward the substrate that can direct the curvature of the mechanical layer upward when the sacrificial layer is removed.
Abstract:
Embodiments of MEMS devices include a movable layer supported by overlying support structures, and may also include underlying support structures. In one embodiment, the residual stresses within the overlying support structures and the movable layer are substantially equal. In another embodiment, the residual stresses within the overlying support structures and the underlying support structures are substantially equal. In certain embodiments, substantially equal residual stresses are be obtained through the use of layers made from the same materials having the same thicknesses. In further embodiments, substantially equal residual stresses are obtained through the use of support structures and/or movable layers which are mirror images of one another.
Abstract:
Described herein is the use of a diffusion barrier layer between metallic layers in MEMS devices. The diffusion barrier layer prevents mixing of the two metals, which can alter desired physical characteristics and complicate processing. In one example, the diffusion barrier layer may be used as part of a movable reflective structure in interferometric modulators.
Abstract:
Methods and apparatus are provided for controlling a depth of a cavity between two layers of a light modulating device. A method of making a light modulating device includes providing a substrate, forming a sacrificial layer over at least a portion of the substrate, forming a reflective layer over at least a portion of the sacrificial layer, and forming one or more flexure controllers over the substrate, the flexure controllers configured so as to operably support the reflective layer and to form cavities, upon removal of the sacrificial layer, of a depth measurably different than the thickness of the sacrificial layer, wherein the depth is measured perpendicular to the substrate.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a lower wiring layer on a substrate. The method further includes forming a plurality of discrete wires from the lower wiring layer. The method further includes forming an electrode beam over the plurality of discrete wires. The at least one of the forming of the electrode beam and the plurality of discrete wires are formed with a layout which minimizes hillocks and triple points in subsequent silicon deposition.
Abstract:
A method of forming a Micro-Electro-Mechanical System (MEMS) includes forming a lower electrode on a first insulator layer within a cavity of the MEMS. The method further includes forming an upper electrode over another insulator material on top of the lower electrode which is at least partially in contact with the lower electrode. The forming of the lower electrode and the upper electrode includes adjusting a metal volume of the lower electrode and the upper electrode to modify beam bending.