Abstract:
An ozone water production device (1) includes: flow rate controllers (4, 5) that each control a flow rate of gas which is a raw material; a flow rate meter (12) that measures a flow rate of water which is a raw material; a booster pump (13) that controls pressure of the water; an ozone water generating unit (8) that generates ozone water by mixing ozone gas and the water; and a pressure sensor (17) that measures pressure of the ozone water which is to be supplied to a use point (19). The booster pump (13) controls the pressure of the water such that the pressure of the ozone water measured by the pressure sensor (17) is constant. The flow rate controllers (4, 5) each control the flow rate of the gas in accordance with the flow rate of the water measured by the flow rate meter (12).
Abstract:
A method for producing ozone is disclosed. The ozone is separated by an adsorbent separation system from a mixture of oxygen and ozone. The adsorbent separation system operates by adsorbing ozone at higher pressures, then desorbing the ozone at normal pressures. Increased ozone concentrations result from these steps while the oxygen component can be recovered and used in producing the mixture of oxygen and ozone.
Abstract:
An apparatus for producing a high purity stream of ozone including a reaction chamber having an inlet and an outlet, a gaseous feed stream having a first purified component and an ultraviolet source. The gaseous feed stream enters the reaction chamber through the inlet, the first purified component includes oxygen, the ultraviolet source forms ozone from the oxygen, and the ozone exits the reaction chamber through the outlet.
Abstract:
In accordance with at least one exemplary embodiment, a syringe device, method and system for delivering a therapeutic amount of ozone are disclosed. A sterility case can enclose a syringe portion and can maintain sterility while the syringe device is interfaced to an ozone generator. A valvably-controlled fluid channel can extend from the barrel of the syringe through the case. Conducting elements can be attached to the case and can breach the case. The conductive elements can be connected to electrodes. The electrodes can be attached to the syringe. The syringe portion can be filled with oxygen gas via the valvably-controlled fluid channel. An electric current can be provided to the conductive elements from an ozone generator resulting in a corona discharge from at least one electrode. A therapeutic amount of ozone gas can be produced from the oxygen gas and the syringe delivered into the sterile field without compromise.
Abstract:
An ozone treatment apparatus includes: an ozone gas generator that generates ozone gas from raw material gas; a sludge pump that pressurizes sludge to be treated; an ejector in which the sludge to be treated, which is pressurized by the sludge pump, is injected; and a valve provided between the ozone gas generator and the ejector. The valve becomes in an open state when pressure on the former stage side is larger than pressure on the latter stage side by a specified value or higher. An ozone gas storage facility may be provided between the ozone gas generator and the valve. A sludge mixing tank installed in the latter stage of the ejector and a sludge circulation pump that connects an upper part of the sludge mixing tank and the latter stage of the sludge pump may be provided.
Abstract:
An ozonated water supply method includes: feeding dissolving water contained in a circulation tank to an ozonation device at a given feed rate while feeding ultrapure water to the circulation tank, and returning ozonated water that has not been used at a use point to the circulation tank, dissolving ozone in the dissolving water using the ozonation device to obtain ozonated water, and feeding the ozonated water to the use point; feeding oxygen gas having a nitrogen gas content of 0.01 vol % or less to a discharge-type ozone gas-producer, and feeding the resulting ozone-containing gas to the ozonation device; adjusting the feed rate of the ultrapure water to the circulation tank; and adjusting the dissolved ozone concentration in the ozonated water. The method can reduce or suppress the accumulation of nitric acid in the recirculation system when a discharge-type ozone gas-producer is used as the ozone gas-producer.
Abstract:
A household appliance system for safe generation and delivering of ozone comprising at least one disposable capsule, each capsule is configured to chemically generate a predetermined dose of oxygen wherein the disposable capsule is manipulated in a way that initiates generation of oxygen, and an ozone generator for generating ozone from said predetermined dose of oxygen, wherein the ozone generator is fluidically connected to said capsule.
Abstract:
A system for performing ozone water treatment comprises a voltage supply circuit and a plasma eductor reactor. The voltage supply circuit includes an H-bridge controller and driver, a transformer, and an output port. The H-bridge controller and driver are configured to switch the electrical polarity of a pair of terminals. A primary of the transformer is connected to the H-bridge driver and controller. A secondary of the transformer connects in parallel with a first capacitor and in series with an inductor and a second capacitor. The output port connects in parallel with the second capacitor. The plasma eductor reactor includes an electric field generator, a flow spreader, and a diffuser. The electric field generator includes a pair of electrodes that generate an electric field. The flow spreader supplies a stream of oxygen. The diffuser supplies a stream of water. The streams of water and oxygen pass through the electric field.
Abstract:
A sterilization, sanitization and/or decontamination device 1 comprising at least a humidifier unit, an ozone generator unit 60, at least one discharge outlet 16 and a controller for controlling the humidifier and ozone generator units, the at least one discharge outlet 16 comprising at least two at least partially converging plates 72, 74 between which substances are discharged.
Abstract:
An ozone generating apparatus which is provided with a discharge suppressing member formed of a metal plate and covering an outer circumferential surface of a portion of a dielectric tube facing to a tube sheet, the discharge suppressing member being electrically in contact with a metal tube or the tube sheet, wherein the discharge suppressing member is formed by curling the metal plate longer than a circumferential length of the dielectric tube into a circular shape so as to have an overlapping portion, and by joining together, in the overlapping portion, a part of the metal plate placed outside and a part of the metal plate placed inside, at a near-end portion of the metal plate placed outside in the overlapping portion, and wherein the discharge suppressing member has, on the part of the metal plate placed outside in the overlapping portion, a spring portion.