Abstract:
A miniature hydro-power generation system includes an outer housing and an inner housing. The outer housing may receive a flow of liquid flowing in a first direction at a predetermined range of pressure. The flow of liquid may be decreased by a predetermined amount of pressure and increased by a predetermined amount of velocity and channeled to a hydro-generator included in the inner housing with an inlet nozzle. The flow of liquid may be channeled with the inlet nozzle to flow in a second direction that is substantially perpendicular to the first direction. Upon transfer of kinetic energy in the flow of liquid to the hydro-generator, the inner housing may rotate in the second direction. The flow of liquid may then be channeled back to the first direction and out of the housing with an outlet nozzle. The outlet nozzle configured to increase the pressure and decrease the velocity of the flow of liquid to minimized non-laminar flow characteristics.
Abstract:
Circulation systems for ponds, lakes, or other bodies of water. In one set of embodiments, water is drawn up from the depths of the body for exposure to the atmosphere and to generate an overall, high flow circulation pattern throughout the entire body. In other embodiments, the circulation in the body of water is primarily limited to an upper aerobic zone with only small and controlled volumes from a lower anaerobic zone being brought up. Each system preferably includes a flotation platform, dish, impeller, and draft tube with specific modifications to the various systems to adapt them for use in a variety of environments.
Abstract:
The present invention provides for a method of producing a composition containing a polymer having undergone phase inversion, the method comprising the step of: effecting phase inversion of a phase invertible water insoluble polymer in an aqueous composition and the composition comprises a mixture of at least two different substances, one of which is a water insoluble dispersible polymer having undergone phase inversion while the other is optionally a contaminant.
Abstract:
A filtering apparatus comprises a microporous membrane and an actuator. The membrane is positioned to traverse across the hollow interior of a conduit used for the transport of molecules in bulk. In one example, the pores of the membrane comprise a plurality of open-ended carbon nanotubes. The actuator comprises a transducing material such as a polyvinyledene fluoride film that is operatively positioned in contact with the membrane and is capable of propagating acoustic vibration onto the membrane at a particular frequency so as to hasten the movement of the molecules through the membrane. Similarly, a method of filtering water comprises the steps of: (a) sifting molecules of water through the membrane, the pores of the membrane comprising a plurality of carbon nanotubes; and (b) propagating acoustic vibration onto the microporous membrane at a libration frequency of ice so as to hasten movement of the water molecules within the carbon nanotubes.
Abstract:
A water treatment apparatus including a series of pairs of water filtration cells of an upwelling type. Each cell of each pair has a longitudinally extending water conduit in fluid communication between an upper and a lower end of each cell. The first cell of each pair is a fluidized bed type containing a biologically active media, the water entering a bottom of this cell upwelling through the biologically active media to discharge from a discharge port at or near the top of the first cell. The second cell of each pair has the upper end of its water conduit in fluid communication with the discharge port of the paired first cell and contains media which removes nitrates from the water entering and upwelling through the nitrate removing media for discharge from the second cell.
Abstract:
A FOG waste treatment facility includes a slipstream loop incorporating circulation pumps, heat exchangers and anaerobic digesters for continuously circulating actively digesting sludge at a rate to preclude solid settlement accumulation warmed actively digesting sludge is pumped from the slipstream loop through a rock trap into a delivery/input loop both for aiding delivery of FOG waste to, and for partially filing, a receiving/conditioning holding tank. The actively digesting sludge softens and liquefies the FOG wastes offloaded into the holding tank for further treatment at a desired treatment temperature range. The contents of the receiving/conditioning holding tank are continuously mixed by a bottom-top recirculation chopper pump to pre-treat the FOG wastes, and decreasing solids particle size. The produced, flowable feedstock slurry can then be injected back into the actively digesting sludge slipstream loop at a controlled rate. The resultant mixture then is introduced into the input of waste treatment systems having anaerobic digesters for digestion of solids.
Abstract:
A miniature hydro-power generation system includes an outer housing and an inner housing. The outer housing may receive a flow of liquid flowing in a first direction at a predetermined range of pressure. The flow of liquid may be decreased by a predetermined amount of pressure and increased by a predetermined amount of velocity and channeled to a hydro-generator included in the inner housing with an inlet nozzle. The flow of liquid may be channeled with the inlet nozzle to flow in a second direction that is substantially perpendicular to the first direction. Upon transfer of kinetic energy in the flow of liquid to the hydro-generator, the inner housing may rotate in the second direction. The flow of liquid may then be channeled back to the first direction and out of the housing with an outlet nozzle. The outlet nozzle configured to increase the pressure and decrease the velocity of the flow of liquid to minimized non-laminar flow characteristics.
Abstract:
A water agitation system is configured to be positioned within a water retention structure. The system includes a main body positionable within a water retention area of the water retention structure, a magnet assembly housed within the main body, and an agitation ring loosely mounted over a portion of the main body. The agitation ring is magnetically attracted to, or repelled by, the magnet assembly so that a movement of the magnet assembly causes a corresponding movement of the agitation ring in order to circulate water retained within the water retention structure.
Abstract:
One embodiment of a fluid mobilizing vessel shown in FIG. 1 comprises a hull (14) impervious to a surrounding fluid (12), a solar cell (16) capable of converting light (18) into electrical energy, an electromechanical actuator (24), and a mobile weight (28) movable with respect to the hull, whereby the electromechanical actuator moves the weight relative to the hull, causing compensatory motion of the hull within the surrounding fluid and thereby motion (32) of the surrounding fluid.
Abstract:
A skimmer device for cleaning the surface of a body of liquid having a housing with a front and rear opening. Disposed within the housing is at least one float, a removable tray, and a battery powered motor with an attached propeller. Attached to the exterior of the housing is a guide fin and a net. Additionally, the housing has a solar device thereon that operates to recharge the rechargeable battery.