Abstract:
A modified silica glass composition for providing a reduction in the multiphonon quenching for a rare-earth dopant comprising: SiO2 in a host material; a rare-earth dopant; a first SiO2 modifier; and a second SiO2 modifier; such that said first modifier and said second modifier reduce multiphonon quenching of the rare-earth dopant contained therein.
Abstract:
In a method of making a high-quality silica glass, a rare earth element that is a substance making a great contribution to the index of refraction is introduced therein together with aluminum for stabilizing the glass. An alkoxide of aluminum or its derivative is used as the starting material for preparing a boehmite sol. A salt of at least one element selected from rare earth elements or a solution in which the salt is dissolved and the boehmite sol are mixed with a silica sol, whereupon the sols are vitrified.
Abstract:
A novel copper activated thermoluminescence dosimeter comprising a glass composition having: about 94-97 weight percent SiO.sub.2 ; about 0.4 to 2 weight percent Al.sub.2 O.sub.3 ; about 0.02 to 1 weight percent M.sub.2 O, where M comprises Na.sup.+ or K.sup.+ ; about 2 to 6 weight percent B.sub.2 O.sub.3 ; and Cu(I), where Cu(I) is present at a level between about 10.sup.18 to 10.sup.19 ions/cm.sup.3 ; method of making the same.
Abstract:
A yellow color by transmitted light is produced in a high silica glass by impregnating a porous, high silica glass with a solution of chromium and zinc salts and consolidating the glass under oxidizing conditions to dope the glass with chromium and zinc oxides, the chromium being predominantly in the hexavalent state. Optionally, an aluminum salt is included in the impregnating solution. The glass has particular utility as a filter for lighting purposes.
Abstract:
The present invention comprises a process for separating rare earth ions or actinide ions or mixtures thereof in solution by passing the solution through an ion exchange material to separate the rare earths or actinides or mixtures thereof. The ion exchange material has a surface area of about 5-1500 m.sup.2 /g. The ion exchange material is impregnated with a liquid containing alkali metal cations, Group Ib metal cations, ammonium cations, organic amines or mixtures thereof, at a pH range above about 9. A plurality of fractions of the solution is collected as the solution passes through the ion exchange material, preferably in a column. This process is particularly preferred for separating rare earth ions and especially lanthanum and neodymium. It is particularly preferred to purify lanthanum to contain less than 0.1 ppm, preferably less than 0.01 ppm, of neodymium. In another embodiment, the present invention comprises a method of producing a porous silicate glass containing at least one transition metal oxide additive selected from a group consisting of the bottom two rows of Group VIII of the Periodic Table. This method comprises preparing a base glass from a melt which contains 40-80 mol percent of silica and up to 10 mol percent of one or more transition metal oxide additives selected from said group or of precursors of said oxide additives, separating said base glass by heat treatment into at least a soluble phase and an insoluble phase, leaching out the soluble phase. In yet another embodiment, the present invention comprises an ion exchange material consisting of a porous glass or silica gel including at least about 0.2 mol percent of a transition metal oxide or hydrous metal oxide and containing at least 0.3 mol percent of alkali metal cation, Group Ib metal cation, ammonium, organic amines, or mixtures thereof.
Abstract:
Quartz glass includes iron and aluminum. The total iron content ranges from 0.01 to 5% by weight, and the total aluminum content ranges from 0.01 to 10% by weight. The quartz glass exhibits infrared rays-absorbing ability and visible light-transmitting ability. Also a process for making such a quartz glass is disclosed.
Abstract:
Doped quartz glass is produced by fusing a mixture of quartz powder with a concentrate. The concentrate consists of quartz powder and the oxides of alkaline earth metals and/or alkali metals (dopants). By adding a small quantity of dopants, a doped quartz glass can be obtained having a viscosity behavior corresponding to that of Vycor glass. Still softer glasses can be obtained by the addition of some more dopants.