Abstract:
A photoreactive polysaccharide which comprises a polysaccharide bound to a glycidyl ester via a covalent bond, a photocrosslinked-polysaccharide prepared by using the photoreactive polysaccharide, and medical products comprising the photocrosslinked-polysaccharide.
Abstract:
A process for producing a polysaccharide sponge comprises the steps of (A) freezing a photoreactive polysaccharide solution, and (B) irradiating the frozen photoreactive polysaccharide solution with light to crosslink the photoreactive polysaccharide, thereby obtaining the polysaccharide sponge. The process includes simplified steps requiring no removal of solvent, and has such an advantage that impurities are easily removed therefrom.
Abstract:
A novel method of manufacturing thick foams, especially molded thick foams useful as tissue scaffolds and other medical devices. Also disclosed are novel thick foams made using the process of the present invention, wherein such thick foams may be used as medical devices or components of medical devices.
Abstract:
The present invention relates to a method for preparing a porous scaffold for tissue engineering. It is another object of the present invention to provide a porous scaffold obtainable by the method as above described, and its use for tissue engineering, cell culture and cell delivery. The method of the invention comprises the steps consisting of: a) preparing an alkaline aqueous solution comprising an amount of at least one polysaccharide, an amount of a cross-linking agent and an amount of a porogen agent b) transforming the solution into a hydrogel by placing said solution at a temperature from about 4° C. to about 80° C. for a sufficient time to allow the cross-linking of said amount of polysaccharide and c) submerging said hydrogel into an aqueous solution d) washing the porous scaffold obtained at step c).
Abstract:
A method for producing foams, such as sponges, from hydrocolloids is described. A solid or semi-solid gel is formed by dissolving polymeric material in an aqueous solvent. The gel formed is allowed to set, and may optionally then be cut into the desired shape. The gel may be frozen to allow formation of ice crystals to act as porogens. Subsequently, the gel is exposed to a radiant energy field for drying under vacuum. This causes the solvent to boil and the foam or sponge is formed. Medicinally active ingredients may be included in the process, so that the sponge or foam formed contains the active ingredient dispersed within the structure. The method described provides an alternative to the conventional methods of particulate leaching or freeze drying.
Abstract:
A process for producing a polysaccharide sponge comprises the steps of (A) freezing a photoreactive polysaccharide solution, and (B) irradiating the frozen photoreactive polysaccharide solution with light to crosslink the photoreactive polysaccharide, thereby obtaining the polysaccharide sponge. The process includes simplified steps requiring no removal of solvent, and has such an advantage that impurities are easily removed therefrom.
Abstract:
Water dispersible or water soluble porous bodies comprising a three dimensional open-cell lattice containing (a) 10 to 95% by weight of a water soluble polymeric material and (b) 5 to 90% by weight of a surfactant, said porous bodies having an intrusion volume as measured by mercury porosimetry of at least about 3 ml/g with the proviso that said porous bodies are not spherical beads having an average bead diameter of 0.2 to 5 mm
Abstract:
A process for producing a polysaccharide sponge comprises the steps of (A) freezing a photoreactive polysaccharide solution, and (B) irradiating the frozen photoreactive polysaccharide solution with light to crosslink the photoreactive polysaccharide, thereby obtaining the polysaccharide sponge. The process includes simplified steps requiring no removal of solvent, and has such an advantage that impurities are easily removed therefrom.
Abstract:
Processes for the preparation of adherent polyvinylidene fluoride, hexafluoropropylene coatings on objects and for the direct production of open celled foams from a polymer latex without a need for any blowing agent.
Abstract:
Methods and compositions are described that provide three dimensional porous matrices as structural templates for cells. The porous matrices of the present invention have desirable mechanical properties suitable to a variety of applications, including platforms for in vitro cell cultivation, implants for tissue and organ engineering, and materials suitable for chromatography and filtration.