Abstract:
In some variations, the invention provides a method and additive for improving melt strength and processing stability in polymer blow molding or blown-film extrusion, comprising: providing a polymer or a combination of polymers; forming a melt phase of the polymer(s); and introducing nanocellulose to the melt phase, wherein the introduction of the nanocellulose in step (c) increases the melt strength of the melt phase. The nanocellulose may include hydrophobic or hydrophilic nanocellulose. The nanocellulose may include lignin-coated cellulose nanocrystals and/or lignin-coated cellulose nanofibrils. The nanocellulose may be present in the melt phase at a concentration of about 0.01 wt % to about 10 wt %, for example. The nanocellulose is preferably obtained from an AVAP® lignocellulosic biomass fractionation process.
Abstract:
A continuous process for manufacturing a blended polymer includes mixing a native starch, a polyolefin, and a compatibilizer; and forming the blended polymer from the resulting mixture using an extruder. The process can also include mixing the native starch, the polyolefin, and the compatibilizer in the extruder. The polyolefin can be a petroleum- or bio-based polyethylene, and the compatibilizer can be a maleic anhydride grafted polyolefin. The process can further include mixing a processing aid such as glycerin, and forming the blended polymer into a film.
Abstract:
There is provided a process for producing a resin composition in a safe and cost-effective manner, the resin composition being a dispersion of active particles reactive with oxygen in a thermoplastic resin. The process is one for producing a resin composition containing at least a thermoplastic resin and active particles that have been dispersed in the thermoplastic resin and are reactive with oxygen in an atmosphere, the process comprising the steps of: protecting the active particles with a dispersion medium to prevent oxygen in the atmosphere from contacting with the active particles; removing the dispersion medium while melt-kneading the thermoplastic resin and the active particles protected with the dispersion medium to replace the dispersion medium with the thermoplastic resin; and cooling and solidifying the thermoplastic resin with the active particles dispersed therein.
Abstract:
Provided is a composition for hot melt extrusion including a drug and hypromellose acetate succinate (HPMCAS) having a hydroxypropoxy molar substitution of 0.40 or more and a mole ratio of an acetyl group to a succinyl group of less than 1.6. Further, provided is a method for producing a hot melt extrudate including the step of hot melt-extruding a composition for hot melt extrusion including a drug and hypromellose acetate succinate having a molar hydroxypropoxy substitution of 0.40 or more and a mole ratio of an acetyl group to a succinyl group of less than 1.6, at a hot melt temperature of not lower than a melting temperature of the hypromellose acetate succinate or of not lower than a temperature at which both the hypromellose acetate succinate and the drug are melted.
Abstract:
Provided are: a resin composition that can be given excellent formability and wear resistance when used as a friction material or the like; and a method for producing the resin compound. A titanate compound, which is a salt of at least one element selected from the group consisting of alkali metals and alkaline earth metals, is dispersively contained in a thermosetting resin prior to curing.
Abstract:
A composite formulation and composite product are disclosed. The composite formulation includes a polymer matrix having metal particles, the metal particles including dendritic particles and tin-containing particles. The metal particles are blended within the polymer matrix at a temperature greater than the melt temperature of the polymer matrix. The tin containing particles are at a concentration in the composite formulation of, by volume, between 10% and 36%, and the dendritic particles are at a concentration in the composite formulation of, by volume, between 16% and 40%. The temperature at which the metal particles are blended generates metal-metal diffusion of the metal particles, producing intermetallic phases, the temperature being at least the intermetallic annealing temperature of the metal particles.
Abstract:
Disclosed is a production method of a thermoplastic resin composition comprising: compounding 0.001 to 50 parts by mass of a metal complex (B) with respect to 100 parts by mass of a thermoplastic resin (A), and kneading it under a condition of a kneading temperature of 225 to 300° C. and of a kneading time of 0.5 to 20 minutes, wherein a metal of the metal complex (B) is a metal except for zinc; a molded body obtained by molding the thermoplastic resin composition which is obtained by the production method; and a light emission body using the molded body.
Abstract:
Disclosed is a bituminous composition in the form of granules, each granule including a core and a coating and having a mass for approximately one hundred particles of from 0.5 g to 2 g, the core including from 40 wt. % to 60 wt. % of a binder matrix; from 30 wt. % to 40 wt. % of a polymer; from 4 wt. % to 6 wt. % of a compatibilizing agent; and from 2 wt. % to 15 wt. % of an anti-adhesive filler; and the coating including an anti-sticking agent. The invention relates also to a method for preparing the composition, and to the use thereof in bitumen plants.
Abstract:
A method for producing a resin composition using an extruder, the extruder having a cylinder and a screw disposed inside the cylinder, the cylinder being provided with a main feed port and further optionally provided with a side feed port disposed downstream in an extrusion direction from the main feed port, and the method comprising: supplying a resin (A) in the total amount to the extruder from the main feed port; supplying a fibrous filler (B), whose a weight average fiber length is 1 mm or more, in the total amount to the extruder from the main feed port, or, with the extruder being provided with the side feed port, supplying the fibrous filler (B) partly to the extruder from the main feed port and the remainder to the extruder from the side feed port; melt-kneading the supplied resin (A) and the fibrous filler (B); and extruding the melt-kneaded material.
Abstract:
The invention pertains to a process for manufacturing a fluoropolymer hybrid organic/inorganic composite comprising: (i) partially hydrolysing and/or polycondensing, in the presence of an aqueous medium, a metal compound of formula (I): X4-mAYim, wherein X is a hydrocarbon group, Y is a hydrolysable group selected from the group consisting of an alkoxy group, an acyloxy group and a hydroxyl group, A is a metal selected from the group consisting of Si, Ti and Zr, and m is an integer from 1 to 4, so as to obtain an aqueous medium comprising a pre-gelled metal compound comprising one or more inorganic domains consisting of ≡A-O-A≡ bonds and one or more residual hydrolysable groups Y [compound (M)], and then (ii) reacting in the molten state at least a fraction of hydroxyl groups of a functional fluoropolymer [polymer (F)] with at least a fraction of hydrolysable groups Y of said pre-gelled metal compound [compound (M)], so as to obtain a fluoropolymer hybrid organic/inorganic composite. The invention also pertains to uses of said fluoropolymer hybrid organic/inorganic composite in several applications.