Abstract:
Various processes are disclosed for producing nanocellulose materials following steam extraction or hot-water digestion of biomass. Processes are also disclosed for producing nanocellulose materials from a wide variety of starting pulps or pretreated biomass feedstocks. The nanocellulose materials may be used as rheology modifiers in many applications. Water-based and oil-based drilling fluid formulations and additives are provided. Also, water-based and oil-based hydraulic fracturing fluid formulations and additives are provided. In other embodiments, polymer-nanocellulose composites are provided.
Abstract:
A composition comprising nanocellulose is disclosed, wherein the nanocellulose contains very low or essentially no sulfur content. The nanocellulose may be in the form of cellulose nanocrystals, cellulose nanofibrils, or both. The nanocellulose is characterized by a crystallinity of at least 80%, an onset of thermal decomposition of 300° F. or higher, and a low light transmittance over the range 400-700 nm. Other variations provide a composition comprising lignin-coated hydrophobic nanocellulose, wherein the nanocellulose contains very low or essentially no sulfur content. Some variations provide a composition comprising nanocellulose, wherein the nanocellulose contains about 0.1 wt % equivalent sulfur content, or less, as SO4 groups chemically or physically bound to the nanocellulose. In some embodiments, the nanocellulose contains essentially no hydrogen atoms (apart from hydrogen structurally contained in nanocellulose itself) bound to the nanocellulose. Various compositions, materials, and products may incorporate the nanocellulose compositions disclosed herein.
Abstract:
The present invention provides a process for producing a nanocellulose material, comprising: fractionating a lignocellulosic biomass feedstock in the presence of a solvent for lignin and water, but no acid catalyst, to generate cellulose-rich solids; and then mechanically treating the cellulose-rich solids to form a nanocellulose material comprising cellulose nanofibrils and/or cellulose nanocrystals. Many organic or inorganic solvents are possible. In some embodiments, the solvent for lignin is an oxygenated organic compound, such as a C1-C18 alcohol, e.g. ethanol, ethylene glycol, propanol, propanediol, glycerol, butanol, or butanediol. The solvent for lignin may be an aromatic alcohol, such as phenol, cresol, or benzyl alcohol. The solvent for lignin may be a ketone, an aldehyde, or an ether, such as methyl ethyl ketone or diethyl ether. The solvent for lignin may be a non-oxygenated alkane, olefin, or aromatic hydrocarbon. In some embodiments, the solvent for lignin is an ionic liquid.
Abstract:
A composition comprising nanocellulose is disclosed, wherein the nanocellulose contains very low or essentially no sulfur content. The nanocellulose may be in the form of cellulose nanocrystals, cellulose nanofibrils, or both. The nanocellulose is characterized by a crystallinity of at least 80%, an onset of thermal decomposition of 300° F. or higher, and a low light transmittance over the range 400-700 nm. Other variations provide a composition comprising lignin-coated hydrophobic nanocellulose, wherein the nanocellulose contains very low or essentially no sulfur content. Some variations provide a composition comprising nanocellulose, wherein the nanocellulose contains about 0.1 wt % equivalent sulfur content, or less, as SO4 groups chemically or physically bound to the nanocellulose. In some embodiments, the nanocellulose contains essentially no hydrogen atoms (apart from hydrogen structurally contained in nanocellulose itself) bound to the nanocellulose. Various compositions, materials, and products may incorporate the nanocellulose compositions disclosed herein.
Abstract:
A low-cost process is provided to render lignocellulosic biomass accessible to cellulase enzymes, to produce fermentable sugars. Some variations provide a process to produce ethanol from lignocellulosic biomass (such as sugarcane bagasse or corn stover), comprising introducing a lignocellulosic biomass feedstock to a single-stage digestor; exposing the feedstock to a reaction solution comprising steam or liquid hot water within the digestor, to solubilize the hemicellulose in a liquid phase and to provide a cellulose-rich solid phase; refining the cellulose-rich solid phase, together with the liquid phase, in a mechanical refiner, thereby providing a mixture of refined cellulose-rich solids and the liquid phase; enzymatically hydrolyzing the mixture in a hydrolysis reactor with cellulase enzymes, to generate fermentable sugars; and fermenting the fermentable sugars to produce ethanol. Many alternative process configurations are described. The disclosed processes may be employed for other fermentation products.
Abstract:
This disclosure provides drilling fluids and additives as well as fracturing fluids and additives that contain cellulose nanofibers and/or cellulose nanocrystals. In some embodiments, hydrophobic nanocellulose is provided which can be incorporated into oil-based fluids and additives. These water-based or oil-based fluids and additives may further include lignosulfonates and other biomass-derived components. Also, these water-based or oil-based fluids and additives may further include enzymes. The drilling and fracturing fluids and additives described herein may be produced using the AVAP® process technology to produce a nanocellulose precursor, followed by low-energy refining to produce nanocellulose for incorporation into a variety of drilling and fracturing fluids and additives.
Abstract:
In some variations, a process is provided for producing a pulp product at a biorefinery site, comprising: converting a woody cellulosic material to a first pulp stream; converting a non-woody cellulosic material to a second pulp stream; blending the second pulp stream into the first pulp stream; and recovering or further processing the blended pulp stream as a pulp product. Biorefinery site infrastructure may be shared between the woody and non-woody lines. Also, the process may include process integration of mass and/or energy between the woody and non-woody lines. The process may be a retrofit addition to a pulp plant, or a greenfield biorefinery site. The non-woody line also can generate fermentable sugars, for fermentation to ethanol (or other products). Through allocation of carbon credits from the ethanol to the pulp, the final pulp product life-cycle profile can be improved.
Abstract:
The disclosure provides a process for producing fluff pulp and ethanol from sugarcane bagasse or straw, comprising: fractionating the feedstock in the presence of an acid catalyst, a solvent for lignin, and water, to generate a solid/liquid slurry comprising cellulose-rich solids, hemicelluloses, and lignin; separating the solid/liquid slurry into a solid stream and a liquid stream; further treating the cellulose-rich solids to produce fluff pulp; hydrolyzing the hemicelluloses to generate hemicellulose monomers; and fermenting at least a portion of the hemicellulose monomers to cellulosic ethanol. Lignin is removed from the process during one or more steps and combusted to provide energy for process requirements. The process is integrated with, and provides energy to, a first-generation process that ferments sugarcane-derived sucrose to first-generation ethanol. Similar processes are possible with energy cane, corn, and other crops.
Abstract:
An improved semichemical pulping process is disclosed to reduce washing costs and recovery process costs, while producing equivalent pulp and paper products. In some variations, the invention provides a process for producing a paper product from biomass, comprising: digesting lignocellulosic biomass in the presence of steam and/or hot water to generate an intermediate pulp material and a liquid phase containing extracted hemicelluloses; mechanically refining the intermediate pulp material, to generate a refined pulp material; and introducing the refined pulp material, the liquid phase, and optionally a separate solid material to a paper machine, to produce a paper product. The process optionally employs no washing step. When the liquid phase is washed from the intermediate pulp material or the refined pulp material using an aqueous wash solution, the wash filtrate may be introduced directly or indirectly to the paper machine.
Abstract:
A method for the fractionation of lignocellulosic materials into reactive chemical feedstock in a batch or semi continuous process by the stepwise treatment with aqueous aliphatic alcohols in the presence of sulfur dioxide or acid. Lignocellulosic material is fractionated in a fashion that cellulose is removed as pulp, or converted to esterified cellulose, cooking chemicals are reused, lignin is separated in the forms of reactive native lignin and reactive lignosulfonates and hemicelluloses are converted into fermentable sugars, while fermentation inhibitors are removed. In an integrated vapor compression stripper and evaporator system, aliphatic alcohol is removed from a liquid stream and the resulting stream is concentrated for further processing.