Abstract:
A drive device includes a first fastening device (5), for connection to a stationary base part, especially a vehicle body, or to a movable part, especially a vehicle (hinged) lid or door; a second fastening device (24), for connection to the movable part or to the stationary base part; a spindle drive (17), which includes a threaded spindle (16) and a spindle nut (19) mounted on the threaded spindle (16) and capable of moving the first and the second fastening devices (5, 24) axially relative to each other; and a rotary drive (9), which rotates the spindle drive (17) by way of an overload safety device, wherein the nonrotatable connection between the two components can be released when a certain torque is exceeded, and wherein the overload safety device is formed by a clutch device (15), which comprises an inner part (32) connected to the rotary drive (9), which inner part rotates an intermediate part (34) by way of a damping element (33) and, by way of the intermediate part (34), rotates an outer part (36) connected to the spindle drive (17).
Abstract:
A driving device having a housing tube connected to a stationary base part or a movable structural component part a protective tube connected to the other respective part a spindle drive which has a threaded spindle and a spindle nut arranged on the threaded spindle by which the housing tube and protective tube are movable axially relative to one another, and a rotary drive that drives the spindle drive via a clutch, a rotationally rigid interconnection thereof can be canceled when a determined torque is exceeded. A magnetic ring having a plurality of north and south poles is rotationally arranged near a stationary sensor element. The magnetic ring is arranged at the clutch that is connected to the threaded spindle, fixed with respect to rotation relative to it.
Abstract:
An access control apparatus for an access gate. The access gate typically has a rotator that is configured to rotate around a rotator axis at a first variable speed in a forward direction. The access control apparatus may include a transmission that typically has an input element that is operatively connected to the rotator. The input element is generally configured to rotate at an input speed that is proportional to the first variable speed. The transmission typically also has an output element that has an output speed that is higher than the input speed. The input element and the output element may rotate around a common transmission axis. A retardation mechanism may be employed. The retardation mechanism is typically configured to rotate around a retardation mechanism axis. Generally the retardation mechanism is operatively connected to the output element of the transmission and is configured to retard motion of the access gate in the forward direction when the first variable speed is above a control-limit speed. In many embodiments the transmission axis and the retardation mechanism axis are substantially co-axial. Some embodiments include a freewheel/catch mechanism that has an input connection that is operatively connected to the rotator. The input connection may be configured to engage an output connection when the rotator is rotated at the first variable speed in a forward direction and configured for substantially unrestricted rotation when the rotator is rotated in a reverse direction opposite the forward direction. The input element of the transmission is typically operatively connected to the output connection of the freewheel/catch mechanism.
Abstract:
A drive train for a pivotable flap of a motor vehicle includes a holding device which can hold the flap in at least one open position, a first element which can be driven by a drive motor, and a second element connected to the pivotable flap to pivot the flap in response to movement of the first element. When the second element is moved along a path of motion relative to the first element counter to a specific spring force, a sensor generates a signal indicating relative motion of the elements, and a control device releases the holding device in response to the signal, whereby the flap can be moved manually by applying a force counter to the spring force.
Abstract:
A door closer with a self-powered control unit is disclosed. The control unit for the door closer includes a drive gear configured to rotate in response to movement of a door, and a chain arranged to cooperate with the drive gear to produce linear motion in response to rotation of the drive gear. At least one gear creates rotational motion from the linear motion of the chain to turn a generator and generate electricity to power the control unit. In some embodiments, a set of clutch gears is disposed between the chain and the gear creating the rotational motion from the chain so that only one direction of the rotational motion is transferred to the generator in response to movement of the door in any direction. The control unit can additionally include a power management circuit to store energy from the generator.
Abstract:
The present embodiment provides a hinge assembly of a refrigerator. The hinge assembly includes a bracket; a shaft rotatably supported by the bracket and providing a rotation center of a door; a transfer unit transferring selectively rotatory power of the door to the shaft in order to move the shaft upward and downward; and an operating unit operating the transfer unit.
Abstract:
Simultaneous displacement device for sliding doors, being a first sliding leaf (7) joined to a first cogged belt (9) established between a first set of cogged pulleys (11) and (12) which rotate freely on a first axis (13) and second axis (14) respectively, and a second sliding leaf (8) joined to a second cogged belt (10) established between a second set of cogged pulleys (15) and (16) which rotate freely on said first axis (13) and second axis (14) respectively, said device comprising clutching means (2) which enable to adopt a first position where the first cogged belt (9) and the second cogged belt (10) move independently, and a second position where the first cogged belt (9) and the second cogged belt (10) move integrally to enable the simultaneous displacement of the first sliding leaf (7) and of the second sliding leaf (8).
Abstract:
An electromagnetic frictionally engaged clutch provided with a rotor part including a friction lining. An electrical coil and a first permanent magnet are arranged on the rotor part. The clutch also includes an armature disk which is connected to a second shaft and can be displaced in a rotationally fixed manner, but axially from a coupled end position to an uncoupled end position. The coil of the clutch is enabled to be current-free both in the coupled state and in the uncoupled state. To this end, a second permanent magnet is provided for exerting an axial force opposing the magnetic force of the first permanent magnet on the armature disk.
Abstract:
A control apparatus for opening/closing a vehicle door includes a door opening/closing mechanism for operating the vehicle door, a driving source for driving the door opening/closing mechanism, a connecting/disconnecting apparatus interposed between the door opening/closing mechanism and the driving source, and a controlling apparatus for controlling the connecting/disconnecting apparatus. The controlling apparatus for opening/closing the vehicle door includes a door movement-detecting apparatus for detecting a movement of the vehicle door. The controlling apparatus switches the connecting/disconnecting apparatus from a connected state to a disconnected state when the driving source is stopped during in an opening/closing operation of the vehicle door. The controlling apparatus performs a repetition mode, in which the connecting/disconnecting apparatus repeats the connected state and the disconnected state, when the movement of the vehicle door is detected in the disconnected state of the connecting/disconnecting apparatus.
Abstract:
A barrier operating system having a diagnostic performance feature includes a motorized barrier movable between limit positions and a counterbalance system coupled to the barrier. A disconnect mechanism may be interposed between the motor and the counterbalance system so that the barrier can be moved manually without assistance from the motor. A position detection device is coupled to either the barrier or the counterbalance system and generates a barrier position signal. One of the motor and the position detection device generates operational parameter values for the barrier moving in either direction. A controller receives the operational parameter values and the barrier position signal, and as the barrier is manually moved, the controller compares operational parameter values for each direction of movement at a given position and generates a diagnostic signal based upon the comparison.