Abstract:
A low-density structured material with good mechanical stability that can be used for three-dimensional structures, and methods to make and use same. In embodiments, the low-density structured material includes a first surface of interconnected polyhedrons, a plurality of tetrahedral arrangements whose base is the polyhedrons of the first surface, a second surface that is a web attached to the tetrahedral vertices of the tetrahedral arrangements, and panel materials overlying the web. The low-density structured material can be utilized in a variety of different structures.
Abstract:
A reservoir assembly includes one or more pressure vessels each having a non-circular cross-sectional shape including a rounded rectangle having four generally flat sides with rounded corners. The pressure vessels may be formed of extruded metal, such as aluminum, and have a generally constant cross-section. The pressure vessels include stiffening ribs and varying wall thicknesses to improve strength and to minimize stresses when pressurized, such as during operation when filled with compressed gas. The stiffening ribs meet in the center of each of the pressure vessels and divide the interior volumes into four equal sections. A cap of stamped aluminum is fitted and fully welded to enclose each end of the pressure vessels. One or both of the caps on each of the pressure vessels has a pressure fitting. Two or more pressure vessels extend parallel to one another and are attached together to form the reservoir assembly.
Abstract:
A heat exchange system includes cooling tubes that carry coolant and are placed on an external surface of a storage tank, which may be spherical, cylindrical, or other shape. The storage tank may be a cryogenic rocket fuel tank. The cooling tubes are bent to particular radius of curvatures that correspond to the varying curvatures of the storage tank. A network of spacers and bridge brackets with adjustable setscrews are used to precisely place the cooling tubes in correct positions on the external surface of the storage tank. Once placed in the desired position, the setscrews are adjusted to maximize the surface area contact between the cooling tubes and the exterior surface of the storage tank, resulting in optimal heat transfer without overstressing the materials of the tubing or the storage tank. The precisely positioned tubes may then be permanently affixed to the exterior surface of the storage tank using a cryogenic adhesive.
Abstract:
Methods, apparatus, and device, for a cryogenic storage system that stores and/or transports a liquid or gas at a temperature below ambient temperature. The cryogenic storage system has an enclosure and a cavity. The cryogenic storage system has a dewar that is positioned within the cavity of the enclosure. The dewar has a payload area that is configured to hold a liquid below ambient temperature. The dewar is configured to hold a liquid below ambient temperature and passively stabilize in an upright position. The dewar is formed with an inner wall and an outer wall and has an opening that allows access to the payload area.
Abstract:
A method of manufacturing a high-pressure composite pressure vessel for high-pressure being at or above 70 bar (1000 PSI or 7 MPa) includes providing an expandable core vessel defining a hoop section between end domes. An aligned discontinuous fiber composite material is wrapped over the expandable core vessel aligning with a plurality of load paths present in the expandable core vessel being over the hoop section and end domes. The aligned discontinuous fiber composite material has fibers in a prepreg tape that are at least 5 mm in length to 100 mm in length or less. Next, a continuous fiber-reinforced composite is wrapped over the aligned discontinuous fiber-reinforced composite along the hoop section and not wrapped along the end domes. The expandable core vessel may be pressurized and heated to consolidate the composite overwrap. Finally, the vessel is cooled under pressure resulting in the high-pressure composite pressure vessel.
Abstract:
Methods, apparatus, and device, for a cryogenic storage system that stores and/or transports a liquid or gas at a temperature below ambient temperature. The cryogenic storage system has an enclosure and a cavity. The cryogenic storage system has a dewar that is positioned within the cavity of the enclosure. The dewar has a payload area that is configured to hold a liquid below ambient temperature. The dewar is configured to hold a liquid below ambient temperature and passively stabilize in an upright position. The dewar is formed with an inner wall and an outer wall and has an opening that allows access to the payload area.
Abstract:
A portable gas cylinder assembly is disclosed which includes a gas cylinder having a central axis and a protective shroud configured to encase the gas cylinder and including opposed half-sections mechanically connected to one other along a vertical plane intersecting the central axis of the gas cylinder.
Abstract:
A self-contained breathing apparatus includes an air cylinder pressurized to about 5500 psi, wherein the air cylinder is compatible with infrastructure used in conjunction with the air cylinder. The self-contained breathing apparatus also includes a first regulator valve for reducing air pressure from the air cylinder to a predetermined level. A second regulator valve is also provided for reducing the air pressure from the predetermined level to a level suitable for use by an operator, wherein air is supplied from the second regulator valve to the operator via a mask. The self-contained breathing apparatus further includes a frame for supporting the air cylinder on the back of the operator. Other embodiments are described and claimed.