Abstract:
An automated analyzer for performing multiple diagnostic assays simultaneously includes multiple stations in which discrete aspects of the assay are performed on fluid samples contained in sample vessels. The analyzer includes stations for automatically preparing a sample, incubating the sample, preforming an analyte isolation procedure, ascertaining the presence of a target analyte, and analyzing the amount of a target analyte. An automated receptacle transporting system moves the sample vessels from one station to the next. A method for performing an automated diagnostic assay includes an automated process for isolating and amplifying a target analyte, and, in one embodiment, a method for real-time monitoring of the amplification process.
Abstract:
In an automatic analyzer which includes a reaction container which contains reaction solution therein, a light source which emit light to be transmitted through the reaction solution, a spectral detector which measures the light transmitted through the reaction solution, a memory which stores light measurement data measured by the spectral detector and a CPU which calculates the light measurement data stored in the memory to obtain a light intensity, wherein the spectral detector measures the light over an entirety of an area from one end to the other end of the reaction container at a portion where the reaction solution reserves, the memory stores the light measurement data measured by the spectral detector, and light measurement data in an area where the reaction solution exists is obtained from the memory to calculate a light intensity.
Abstract:
A method for monitoring consumption or release of a gaseous analyte such as oxygen by a liquid sample under investigation includes providing a cuvette (1) having an elongate narrow tube (12) of a material which is substantially gas impermeable and which is at least partly transparent to measurement excitation radiation and emission radiation along some of the length of the tube. The tube (12) has a cross-sectional area of under 1 mm2. The sample (15) is loaded into the cuvette (1), the sample being in contact with a probe in the tube (12), the probe being sensitive to the gaseous analyte, and the liquid having at least one surface and an associated headspace (16). The cuvette, the sample, and the probe are equilibrated at a target measurement temperature. Excitation radiation is directed at a sampling zone of the tube (12) and which is distal from the headspace (16), while maintaining the cuvette at the measurement temperature. The emitted radiation is measured and analysed to determine consumption or release by the sample of the gaseous analyte.
Abstract:
In an automatic analyzer which includes a reaction container which contains reaction solution therein, a light source which emit light to be transmitted through the reaction solution, a spectral detector which measures the light transmitted through the reaction solution, a memory which stores light measurement data measured by the spectral detector and a CPU which calculates the light measurement data stored in the memory to obtain a light intensity, wherein the spectral detector measures the light over an entirety of an area from one end to the other end of the reaction container at a portion where the reaction solution reserves, the memory stores the light measurement data measured by the spectral detector, and light measurement data in an area where the reaction solution exists is obtained from the memory to calculate a light intensity.
Abstract:
An automated analyzer for performing multiple diagnostic assays simultaneously includes multiple stations in which discrete aspects of the assay are performed on fluid samples contained in sample vessels. The analyzer includes stations for automatically preparing a sample, incubating the sample, preforming an analyte isolation procedure, ascertaining the presence of a target analyte, and analyzing the amount of a target analyte. An automated receptacle transporting system moves the sample vessels from one station to the next. A method for performing an automated diagnostic assay includes an automated process for isolating and amplifying a target analyte, and, in one embodiment, a method for real-time monitoring of the amplification process.
Abstract:
A fluorescence measuring apparatus is arranged to measure, substantially at the same time, a plurality of samples in a sample chamber or a plurality of points of the same sample, with the use of an excitation light source. The fluorescence measuring apparatus has a rotary sample stand (2) at the excitation light irradiation position, a plurality of through-holes (2a) are formed in the circumference of the rotary sample stand (2), and a sample placing unit (3) is insertable in each of the through-holes (2a). By moving the sample stand (2) relatively to the excitation light irradiation position, fluorescence measurement can be made on a plurality of samples without sample replacement required in a sample chamber (1).
Abstract:
There is disclosed a measuring system that is for use with an automatic chemical analyzer and accomplishes accurate measurement reproducibility and low cost. The system has a turntable on which plural reaction cells are arranged circumferentially. A light source and a spectroscopic detector are located on opposite sides of the reaction cell in a detection position. The amount of light transmitted through the cell is measured. A motor having an encoder is connected to the turntable. The output signal from the detector corresponding to each reaction cell is accepted in response to the output signal from the encoder.
Abstract:
A device for automatically analyzing samples by a colorimetric procedure may be particularly used for blood analysis. A reaction ring bearing at its periphery an array of transparent reaction cups is stationary. An optical fiber is mounted on a rotating disk, concentric with the reaction ring and downwardly oriented with respect to the top of a cup, the optical fiber having one end at a central location where it receives light from a stationary light source and its other end opposite a bottom of a reaction cup in alignment with a measuring photomultiplier.
Abstract:
The ability to provide a random assortment of chemical analyses is provided by an improved photometric analyzer system. The analyzer has a rotary sample holding means which periodically indexes to place a different cuvette in the optical path of the photometer. An improved cuvette is provided which permits preloading of the samples and reagents without mixing.
Abstract:
A turntable holding a train of reaction containers thereon is continuously turned by one revolution plus an angle for a share of one container and then stopped. This makes one cycle. On the route of transfer of the reaction container, there are provided a light irradiation position and a light collection position.The reaction container into which a sample and a marker reagent have been introduced is transferred such that it does not stop at the irradiation position and the light collection position. The reaction container to which a monochromatic light for excitation has been irradiated at the irradiation position is transferred toward the light collection position. Fluorescence coming from the light collection position is lead to a photodetector, and the concentration of the target substance in the sample is determined from the detected fluorescence after arithmetic processing.Since the light collection position is provided at a place different from the irradiation position in the present apparatus, it is possible to measure fluorescence originating from the sample which is substantially free from the influence of background fluorescence.