Abstract:
A high contrast grating optical modulation includes an optical modulator at a front surface of a substrate to modulate received light. The high contrast grating optical modulation further includes a high contrast grating (HCG) lens adjacent to a back surface of the substrate opposite to the front surface to focus incident light onto the optical modulator. The substrate is transparent to operational wavelengths of the focused incident light and the modulated light.
Abstract:
A contact image sensor comprises: a light source providing a collimated beam; a detector and a switchable grating array comprising first and second transparent substrates sandwiching an array of switchable grating elements with transparent electrodes applied to said substrates, said substrates together providing a total internal reflection light guide. A first transmission grating layer overlays said first substrate. A second transmission grating layer overlays said second substrate. A quarter wavelength retarder layer overlays said second transmission grating layer. A platen overlays said quarter wavelength retarder layer; a polarization-rotating reflecting layer overlaying said first transmission grating layer. An input coupler for directing light from said light source into said light guide and an output coupler for extracting light out of said light guide towards said detector are also provided.
Abstract:
A wavelength division multiplexer is disclosed. The wavelength division multiplexer may include an input waveguide, in which a plurality of Bragg gratings for separating multiplexed optical signals into respective optical signals are provided, and a plurality of output waveguides connected to the input waveguide and configured to receive the optical signals separated by the plurality of Bragg gratings. The plurality of Bragg gratings may include a first Bragg grating including first protrusions each having a first width, and a second Bragg grating including second protrusions each having a second width larger than the first width. Each of the first and second protrusions may include a curved side surface, to which a corresponding one of the optical signals is incident.
Abstract:
An optical semiconductor device is provided as one achieving reduction of power in phase control. The optical semiconductor device has: a first optical waveguide having a plurality of segments each of which has a diffraction grating region with a diffraction grating and a space portion coupled to the diffraction grating region, having two ends interposed between the diffraction grating regions, and having a constant optical length, wherein at least one of the segments is provided with a phase shift structure; a first phase control device for adjusting a phase of light in each segment with the phase shift structure; and a second phase control device for adjusting a phase of light in each segment without the phase shift structure.
Abstract:
A sub-wavelength thin-film metal grating is placed inside a liquid crystal variable optical retarder at a selected distance from a reflective electrode to form a reflective half wave plate, thereby reducing polarization dependence of the optical retardation generated by the variable optical retarder. The approach enables to form within the device the reflective half wave plate that is suitably thin without modifying the reflective electrode of the device.
Abstract:
An eye tracker having a waveguide for propagating illumination light towards an eye and propagating image light reflected from at least one surface of an eye, a light source optically coupled to the waveguide, and a detector optically coupled to the waveguide. Disposed in the waveguide is at least one grating lamina for deflecting the illumination light towards the eye along a first waveguide path and deflecting the image light towards the detector along a second waveguide path.
Abstract:
Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.
Abstract:
An electro-optic modulator device includes a modulation region, a reflecting region, a conductive line and an anti-reflecting region. The modulation region includes a doped region. The reflecting region is over the modulation region. The conductive line is connected to the doped region. The conductive line extends through the reflecting region. The anti-reflecting region is on an opposite surface of the modulation region from the reflecting region.
Abstract:
Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.
Abstract:
An optical system includes an illumination source, a volume hologram, and an image-forming optic. The illumination source is configured to emit coherent light, and the volume hologram is configured to receive and diffract the coherent light. The image-forming optic is arranged opposite the volume hologram and configured to receive the coherent light diffracted by the volume hologram and to spatially modulate the coherent light to form an image.