Abstract:
A mobile robot includes a microprocessor connected to a memory and a wireless network circuit, for executing routines stored in the memory and commands generated by the routines and received via the wireless network circuit. The microprocessor drives the mobile robot to a multiplicity of accessible two dimensional locations within a household, and commands an end effector, including at least one motorized actuator, to perform mechanical work in the household. A plurality of routines include a first routine which monitors a wireless local network and detects a presence of a network entity on the wireless local network, a second routine which receives a signal from a sensor detecting an action state of one of the network entities, the action state changeable between waiting and active, and a third routine which commands the end effector to change state of performing mechanical work based on the presence and on the action state.
Abstract:
Disclosed are a robot cleaner and a method for controlling the same. The robot cleaner is capable of recognizing a position thereof by extracting one or more feature points having 2D coordinates information with respect to each of a plurality of images, by matching the feature points with each other, and then by creating a matching point having 3D coordinates information. Matching points having 3D coordinates information are created to recognize a position of the robot cleaner, and the recognized position is verified based on a moving distance measured by using a sensor. This may allow a position of the robot cleaner to be precisely recognized, and allow the robot cleaner to perform a cleaning operation or a running operation by interworking the precisely recognized position with a map.
Abstract:
A mobile device moving in a specific area including a driving unit, an environment sensing unit, a control unit and a transmittal unit is disclosed. The driving unit moves according to a first driving signal. The environment sensing unit detects an outline of the specific area to generate detection information. The control unit processes the detection information to generate first map information and position information. The transmittal unit transmits the first map information to an electronic device. The electronic device generates second map information according to the first map information, and the control unit generates the first driving signal according to the first map information, the second map information and the position information.
Abstract:
A method for operating a self-propelling and self-steering floor-cleaning device is provided, wherein at least one map of at least one room to be cleaned is storable in a storage unit of the floor-cleaning device, as is a user-predeterminable cleaning plan having one or more cleaning tasks, wherein at least one cleaning task is associated with a particular room that is identifiable from a map, and the floor-cleaning device is placed in a room. In order to provide a method of this kind that enables efficient execution of the cleaning plan, when the cleaning plan is executed, the floor-cleaning device determines whether the room in which it is placed is the particular room, and, if the result of this determination is negative, performance of the cleaning task is not carried out, is interrupted, or is ended. A floor-cleaning device for performing the method is also provided.
Abstract:
The present invention provides a mobile robot configured to navigate an operating environment, that includes a machine vision system comprising a camera that captures images of the operating environment using a machine vision system; detects the presence of an occlusion obstructing a portion of the field of view of a camera based on the captured images, and generate a notification when an occlusion obstructing the portion of the field of view of the camera is detected, and maintain occlusion detection data describing occluded and unobstructed portions of images being used by the SLAM application.
Abstract:
A navigation control system for an autonomous vehicle comprises a transmitter and an autonomous vehicle. The transmitter comprises an emitter for emitting at least one signal, a power source for powering the emitter, a device for capturing wireless energy to charge the power source, and a printed circuit board for converting the captured wireless energy to a form for charging the power source. The autonomous vehicle operates within a working area and comprises a receiver for detecting the at least one signal emitted by the emitter, and a processor for determining a relative location of the autonomous vehicle within the working area based on the signal emitted by the emitter.
Abstract:
A method of creating an indoor environment map includes acquiring encoded position information by detecting revolutions of wheels when a mobile unit travels using encoders to predict a position of the mobile unit based on the encoded position information, acquiring a measured distance from the mobile unit to an object existing in a surrounding environment using the distance measuring sensor, predicting a position of the mobile unit to be moved, estimating a distance from the mobile unit to the object at the predicted position of the mobile unit, determining whether the estimated distance is matched with the measured distance, correcting the predicted position of the mobile unit to estimate a position of the mobile unit to be moved by the matching of the predicted position with the measured position, and creating the indoor environment map using the corrected position and the measured distance.
Abstract:
A robot cleaner includes a main body, a light transmitting unit, an image sensor, a base, a rotation drive unit, a tilting unit, and a tilting drive unit. The light transmitting unit emits light. The light emitted from the light transmitting unit and reflected or scattered is formed on the image sensor. The base supports the light transmitting unit and the image sensor and is rotatably disposed in the main body. The rotation drive unit rotates the base. The tilting unit tilts the light transmitting unit and the image sensor.
Abstract:
A autonomous and remote control all purpose machine (ARCAPM) having different interchangeable modules that are structured and arranged to perform different tasks is disclosed. A machine includes: a body; a plurality of bays in the body, wherein each bay is configured to receive a respective module; and a power source carried by the body. A respective power connector is in each one of the bays that is configured to provide an electrically conductive path between the power source and a device in a module arranged in one of the bays. The machine includes a propulsion system structured and arranged to move the body over the ground. The machine also includes a control system structured and arranged to control autonomous movement of the machine based on at least one of: proximity sensors, metal detectors, and GPS data.
Abstract:
A mobile self-propelled robot for autonomously carrying out actions. The robot includes a drive module for moving the robot over a floor area; a processing module for carrying out the activities during a processing stage; at least one sensor module for detecting information relating to the structure of the surroundings; a detector module configured to detect a displacement of the robot prior to or during the processing stage. Further, the robot includes a navigation module configured to navigate the robot over the floor area during the processing stage using a map of the surroundings, to store and manage one or more maps of the surroundings, and to carry out a self-positioning process if the detector module has detected a displacement of the robot. During the self-positioning process, the presence and the location of the robot within the stored maps are detected.