Abstract:
A field emission cold cathode structure has an insulation layer having two-dimensional arrays of cavities, with a gate electrode on the insulation layer and two-dimensional arrays of opening portions having a generally circular shape positioned over the cavities. Field emission cold cathodes within the cavities each has a cone-like shape with a pointed top. The tops of the field emission cold cathodes are off-center within the opening portions in horizontal directions toward a reference point positioned on the gate electrode, and the distances of the tops from centers of the opening portions are varied to increase in accordance with increase in distance of the field emission cold cathodes from the reference point. This causes deflections of electron beams emitted from the tops of the field emission cold cathodes toward a concentration point which is positioned on a line extending from the reference point in a vertical direction to a surface of the gate electrode.
Abstract:
An improved high-frequency field-emission microelectronic device (10) has a substrate (20) and an ultra-thin emitter electrode (30) extending parallel to the substrate and having an electron-emitting lateral edge (110) facing an anode (40) across an emitter-to-anode gap (120). A control electrode (70), having a lateral dimension only a minor fraction of the emitter-to-anode gap width, is disposed parallel to the emitter and spaced apart from the emitter by an insulator (60) of predetermined thickness. A vertical dimension of the control electrode is only a minor fraction of the height of the anode. The control electrode may substantially surround a portion of the anode, spaced from the anode in concentric relationship. Inter-electrode capacitance between the emitter and the control electrode has only an extremely small value, consisting of only a very small area term and a very small fringing-field term, thus allowing operation of the microelectronic device at higher frequencies or switching speeds than heretofore. Inter-electrode capacitance between the control electrode and the anode also has only an extremely small value, thus improving higher frequency performance further. Devices having a plurality of control electrodes may also be made with improved inter-electrode capacitance.
Abstract:
A method is provided for creating gated filament structures for a field emission display. A multi-layer structure is provided that includes a substrate, an insulating layer, a metal gate layer positioned on a top surface of the insulating layer and a gate encapsulation layer positioned on a top surface of the metal gate layer. A plurality of gates are provided and define a plurality of apertures on the top of the insulating layer. A plurality of spacers are formed in the apertures at their edges on the top surface of the insulating layer. The spacers are used as masks for etching the insulating layer and form a plurality of pores in the insulating layer. The pores are plated with a filament material to create a plurality of filaments. The pores can be overplated to create the plurality of filaments. The filaments are vertically self-aligned in the pores.
Abstract:
A an electron source utilizes a novel extraction grid conductor (20,40,41) to assist in focusing an electron beam emitted by the electron source. The extraction grid conductor (20,40,41) has a collimating conductor (29,31) that separate an extraction grid section (17,21,22) of the extraction grid conductor from conducting strips (26,24,32,33) that electrically connect the extraction grid section (17,21,22) to an external voltage source. The collimating conductor (29,31) creates an electric field that prevents emitted electrons from being attracted to the conducting strips (26,24,32,33) thereby maintaining the emitted electron beam in a substantially column-like configuration.
Abstract:
An integrated circuit electronic grid device includes first and second metal layers wherein the metal layers are vertically disposed within a substitute. A layer of a dielectric medium is disposed between the metal layers and a third metal layer is spaced apart from the second metal layer and insulated from the second metal layer by another layer of a dielectric medium. The first and second metal layers are biased with respect to each other to cause a flow electrons from the first metal layer toward the second metal layer. The second metal layer is provided with a large plurality of holes adapted for permitting the flow of electrons to substantially pass therethrough and to travel toward the third metal layer. A fourth metal layer is spaced apart from the third metal layer to collect the electrons wherein the third metal layer is also provided with a large plurality of holes to permit the electrons to flow therethrough and continue toward the fourth metal layer. The third metal layer is coupled to a lead to permit it to serve as a control grid for modulating the flow of electrons.
Abstract:
Micropoint emissive cathode electron source and field emission-excited cathodoluminescence display means using said source. The source comprises a series of electrodes (5) acting as cathode conductors and carrying micropoints (12) and a series of electrodes (10g) acting as grids, each of the electrodes of one of the series being in contact with a resistive layer (7) and having a lattice structure, so that there are consequently tracks (5a) which intersect and define first openings (6), each of the electrodes of the other series having second openings (11) which are displaced with respect to the first openings.
Abstract:
A field emitter structure, comprising: a base substrate; a field emitter element on the base substrate; a multilayer differentially etched dielectric stack circumscribingly surrounding the field emitter element on the base substrate; and a gate electrode overlying the multilayer differentially etched dielectric stack, and in circumscribing spaced relationship to the field emitter element. Also disclosed are electron source devices, comprising an electron emitter element including a material selected from the group consisting of leaky dielectric materials, and leaky insulator materials, as well as electron source devices, comprising an electron emitter element including an insulator material doped with a tunneling electron emission enhancingly effective amount of a dopant species, and thin film triode devices.
Abstract:
In a field emission microcathode array, a plurality of cones are arranged in a plurality of blocks, each of plural cones, on the main surface of a substrate, each cone having a sharp tip. A plurality of gate electrode portions respectively correspond to the blocks, each portion having a plurality of openings therein corresponding to the plurality of cones of the respective block, each opening being aligned with and disposed in surrounding relationship relative to the corresponding tip of the respectively associated cone. A plurality of lead electrodes, each configured as a fuse, are respectively connected to the plurality of gate electrode portions and each lead electrode provides an independent connection of the respective gate electrode portion to the common power source. In another embodiment, each gate electrode portion and wiring films connected thereto have respectively high and low resistances. In a further embodiment, each gate electrode portion includes openings of different sizes surrounding tips of the cones.
Abstract:
A high resolution matrix addressed flat panel display having single field emission microtip redundancy is formed. A dielectric base substrate is provided. Parallel, spaced conductors acting as cathode columns for the display are formed upon the substrate. A layer of insulation is located over the cathode columns. Parallel, spaced conductors acting as gate lines for the display is formed over the layer of insulation at a right angle to the cathode columns. The intersections of the cathode columns and gate lines are the pixels of the display. A plurality of openings at the pixels extend through the insulating layer and gate lines. At each of the pixels are a plurality of field emission microtips connected to and extending up from the cathode conductor columns and into the plurality of openings. There is a circular resistive layer surrounding each of the field emission microtips to obtain emission uniformity by sustaining the cathode to gate voltage.
Abstract:
A method of forming a self-aligned gated field emitter with reduced gate opening and uniform gate height, on a substrate, is described. A field emitter is formed on the substrate. A thin, conformal dielectric layer is formed over the field emitter and the substrate. A thick dielectric layer is formed over the thin, conformal dielectric layer. The thick dielectric layer is planarized. The thick dielectric layer is etched back. A conductive layer is formed over the thick dielectric layer. The conductive layer is planarized and then etched back. The field emitter is exposed by forming an opening in the conductive layer, by removing the portion of the thin, conformal dielectric layer above and around the top of the field emitter.