Abstract:
A discharge light having a light emitting tube (1) encapsulates a discharging medium, an inner electrode (2) disposed in the light emitting tube, and an outer electrode unit (4) fixed to the outside of the light emitting tube. The outer electrode unit has at least a plurality of outer electrodes (4b) arranged intermittently in the axial direction of the tube and having a part abutting on the outer wall face of the light emitting tube, and a part (4c) engaging with the light emitting tube while coupling the outer electrodes thereof integrally, wherein the engaging part clamps the light emitting tube at a part thereof thus holding the outer electrode unit around the light emitting tube. The light emitting tube is lighted by applying a voltage between the inner electrode and the outer electrode. The outer electrode can be fixed readily to the light emitting tube and the plurality of outer electrodes can be held against the light emitting tube with high accuracy.
Abstract:
An external-electrode fluorescent lamp has two external electrodes disposed on its ends, wherein each external electrode has an extended portion flattened to form two substantially flat circumferential areas. With such flattened circumferential areas, the electric contact made to the conductive strip can be improved. For mounting a row of external-electrode fluorescent lamps, a mounting base with two electrically conductive strips are used. Each electrically conductive strip has a plurality of curved sections to fit the extended portion of the external electrode. The curved section has two substantially sidewalls to make contact with the flat circumferential areas of the extended portion of the external electrode. The extended portion can also be slightly tapered.
Abstract:
A multi-electrode double tube fluorescent lamp includes first external electrodes formed at two ends of an outer glass tube or an inner glass tube, and a second external electrode formed at an inner wall surface of the inner glass tube in a longitudinal direction. A first power source is connected with the first external electrode, and a second power source is connected with the second external electrode. A third external electrode formed along an outer surface of the outer glass tube is connected with the second power source. The second external electrode and the third external electrode are arranged in a radial shape in a direction vertical with respect to the longitudinal direction.
Abstract:
A flat-type fluorescent lamp device includes first and second substrates facing each other, a plurality of first electrodes on the first substrate disposed along a first direction, each first electrode having protrusions extending from both sides of the first electrode along the first direction, a plurality of second electrodes on the first substrate, the second electrodes each having concave portions that correspond to the protrusions of the first electrode and convex portions that correspond to regions between the protrusions of the first electrode, a first fluorescent layer on an entire surface of the first substrate including the first and second electrodes, and a second fluorescent layer on the second substrate.
Abstract:
A method of fabricating an electrode of an external electrode fluorescent lamp (EEFL) includes plating nickel on both ends of a glass tube through an electroless nickel plating process and forming electrodes by dipping the glass tube into an electrode material including zinc, and tin or lead.
Abstract:
A cold cathode fluorescent lamp module includes a substrate, an electrode pair, and a cold cathode fluorescent lamp (CCFL). In this case, the electrode pair has a first electrode and a second electrode, which are alternately disposed on the substrate. The CCFL is located on the substrate and connected with the first electrode and the second electrode.
Abstract:
A light-emitting discharge tube in which an outer wall surface of a glass tube is made less susceptible to flaws by forming a protective film on the outer wall surface of the glass tube, a method of fabricating the light-emitting discharge tube, and a protective film forming apparatus are provided. The light-emitting discharge tube defines light-emitting discharge regions by a plurality of external electrodes. The outer wall surface of the light-emitting discharge tube (the glass tube) is coated with the protective film (a metal film, a conductive metal oxide film, an insulating metal oxide film, or an organic film).
Abstract:
The light source device has a bulb, a discharge medium containing rare gas sealed inside the bulb, an internal electrode disposed inside the bulb, and an external electrode disposed outside the bulb. A holder member holds the external electrode so that the external electrode is opposed to the bulb with a predetermined distance of a space therebetween.
Abstract:
Provided is a flat lamp which includes a lower substrate and an upper substrate that form discharge space therebetween disposed facing each other, a plurality of discharge electrodes formed at least on one of the lower substrate and the upper substrate, a plurality of spacers that form a plurality of discharge cells by defining the discharge space, and disposed parallel to the discharge electrodes between the lower substrate and the upper substrate, a plurality of auxiliary electrodes, to which a voltage is induced by applying a voltage to the discharge electrodes, formed on a surface of the spacers, and a fluorescent layer formed on an inner wall of the discharge cells.
Abstract:
A reflecting structure for planar gas discharge lamps to improve luminance includes a front glass panel on a light emission side, a rear glass panel on a backlight side, at least one pair of electrodes, a fluorescent layer abutting the light emission side and a reaction gas held between the front glass panel and the rear glass panel. The electrodes have a voltage difference to activate the reaction gas to generate discharge which actuates the fluorescent layer to generate light. The light emits through the light emission side of the front glass panel. The invention further provides a light reflective element to reflect the light passing through the backlight side to the front light emission side to increase light utilization and improve the luminance of the light emission side.