Abstract:
Methods for fabricating printed circuit boards, devices for use in the fabrication of printed circuit boards, and structures for a printed circuit board. A mold may be formed as a device that includes a plurality of features, such as recesses, corresponding to a layout of a plurality of conductors for the printed circuit board. A sheet comprised of an electrically-conductive material may be deformed to match the features of the mold. A substrate may then be added to support the sheet, and the sheet may be selectively removed with a mechanical process to define the conductors of the printed circuit board.
Abstract:
A fabrication process of a stepped circuit board, comprises the following steps of: A) cutting a circuit board substrate, printing patterns on an inner layer thereof, performing etching, stepped groove grinding, washer milling, brownification and lamination processing on the inner layer, and then drilling holes on an outer layer thereof; B) depositing copper on the outer layer of the circuit board substrate with drilled holes, and then electroplating the entire circuit board substrate; C) performing pattern transfer; D) performing pattern copper plating on the circuit board substrate, and grinding the shape of a connecting piece (SET) on the circuit board substrate, and then etching the outer layer; E) printing a solder mask and texts in a silk-screen manner; F) depositing nickel immersion gold on the entire substrate, then printing characters in a silk-screen manner; and G) testing and inspecting the electrical performance and appearance of a finished board.
Abstract:
An LED bulb comprises a structural shell formed by folding a flat PCB into a three-dimensional polyhedron shape and a fitting for removably coupling the bulb to a light socket. The PCB comprises a plurality of LEDs, at least one LED mounted electronically on a plurality of faces of the polyhedron, and a driver circuit for driving each LED. The perimeter of the PCB is shaped to join adjacent faces. Each LED produces minimal excess heat, which is partially conducted by a metallic heat sink bridge to the PCB and dissipated to the air through the PCB and through a plurality of spaces in the shell.
Abstract:
According to one embodiment, a light-emitting device includes a substrate, a plurality of pads and a plurality of light-emitting elements. The pads has electric conductance, and are arranged on the substrate. A reflecting layer which is formed by electroplating is provided on a surface of each of the pads. The light-emitting elements are mounted on the pads. A depressed part is left on the substrate. The depressed part is formed on the substrate by removing a pattern on the substrate, by which the pads are electrically connected.
Abstract:
Disclosed is a manufacturing method of metal structure in multi-layer substrate. The manufacturing method includes following steps: coating at least one photoresist layer on a surface of a dielectric layer; exposing the photoresist dielectric layer to define a predetermined position of the metal structure; removing the photoresist layer at the predetermined position to undercut an edge of the photoresist layer adjacent to the predetermined position by a horizontal distance of at least 0.1 μm between a top and a bottom of the edge; forming the metal structure at the predetermined position; and forming at least one top-cover metal layer to cover a top surface and two side surfaces of the metal structure. The present invention can form a cover metal layer covering the top surface and the two side surfaces by one single photomask.
Abstract:
In a method of processing a substrate in accordance with an embodiment, a trench may be formed in the substrate, imprint material may be deposited at least into the trench, the imprint material in the trench may be embossed using a stamp device, and the stamp device may be removed from the trench.
Abstract:
A method of making a conductive article includes providing a substrate having a surface with one or more micro-channels having a width of less than 12 μm. A composition is provided over the substrate and in the one or more micro-channels. The composition includes water and silver nanoparticles dispersed in the water and he weight percentage of silver in the composition is greater than 70% and the viscosity of the composition is in a range from 10 to 10,000 centipoise. The composition is removed from the surface of the substrate. The composition provided in the micro-channels is dried and converted to form one or more electrically conductive micro-wires.
Abstract:
A touch-sensor structure includes a substrate having a plurality of grooves formed thereon. A plurality of first axial electrode strips are disposed in the grooves individually. A plurality of second axial electrode strips are disposed on the substrate and intersect with the first axial electrode strips. An insulating layer fills in the grooves and is disposed at the intersections of the first and second axial electrode strips. Furthermore, the manufacturing method of the touch-sensor structure is provided. The insulating layer is disposed in the grooves of the substrate without a protuberant height on the substrate. Therefore, it can overcome a breakage issue in conventional conductive bridges.
Abstract:
A wiring board having an insulation layer, and a buildup structure formed on the insulation layer and including insulation layers. The insulation layer and the buildup structure form a board structure in which a cavity portion having an opening on a surface of the buildup structure on the opposite side of the insulation layer is formed. The cavity portion is extending through one or more of the insulation layers in the buildup structure and has a groove portion formed on the bottom surface of the cavity portion along a wall surface of the cavity portion. The board structure composed of the insulation layer and the buildup structure has a pad formed on the bottom surface of the cavity portion in a position farther from the wall surface of the cavity portion than the groove portion.
Abstract:
The method uses a common optical, system and sequentially creates structures of different sizes in a polymer substrate by means of different laser processes is described. One process uses a laser beam that is tightly focussed on the substrate surface and is used for creating fine groove structures by semi-continuous direct write type beam movement. The second process uses a second laser beam that is used to form a larger size image on the substrate surface and is used to create blind pads and contact holes in the substrate in step and drill mode. A third optional process uses the second laser beam operating in direct writing mode to remove layers of the substrate over larger continuous areas or in a mesh type pattern.