Abstract:
Acoustical devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, aluminum fiber, or the like.
Abstract:
Battery charger terminals formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non- metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, aluminum fiber, or the like.
Abstract:
A molded conductive loaded resin-based product is processed to reduce surface resistivity. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The percentage by weight of the conductive powder(s), conductive fiber(s), or a combination thereof is between about 20% and 50% of the weight of the conductive loaded resin-based material. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, aluminum fiber, or the like.
Abstract:
Low cost antennas formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises conductor fibers or conductor particles in a resin or plastic host wherein the ratio of the weight of the conductor fibers or conductor particles to the weight of the resin or plastic host is between about 0.20 and 0.40. The conductive fibers can be stainless steel, nickel, copper, silver, or the like. The antenna elements can be formed using methods such as injection molding or extrusion. Virtually any antenna fabricated by conventional means such as wire, strip-line, printed circuit boards, or the like can be fabricated using the conductive loaded resin-based materials. The conductive loaded resin-based material used to form the antenna elements can be in the form of a thin flexible woven fabric which can readily cut to the desired shape.
Abstract:
The invention relates to a module component having chip components buried in a circuit board, and a method of manufacturing the same, and more specifically it relates to a module component capable of obtaining desired circuit characteristics and functions stably if the size of the component is reduced, being produced very efficiently, and suited to machine mounting, and a method of manufacturing the same. According to the invention, since a desired circuit is composed by disposing a specific number of chip components according to a specified rule, it is not necessary to heat the buried chip components at high temperature when forming a module, chip components are obtained in specified values, and the circuit characteristics, functions, and dimensional precision are stably obtained exactly as designed, and moreover since the chip components are disposed according to a specified rule, it is easy to automate insertion of chip components and increase its operation speed, even if the size of the chip components is reduced, and the circuit composition may be flexibly and easily changed only by changing the inserting position and type of chip components.
Abstract:
The invention provides a process for producing a plated plastic article, which requires no chemical etching and can ensure high quality of plating without addition of a large amount of any inorganic filler in order to form a physically rough surface for an effective plating adhesion. After molding thermoplastic materials having a shear strength of 50 MPa or more, the surfaces of the molded articles are subjected to liquid honing treatment with an aluminum abrasive so that the surface roughness Rz (average roughness of ten points) is 10 nullm or more, and subsequently addition of catalyst, activation treatment, and electroless plating are carried out.
Abstract:
Lighting devices are formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises micron conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers in a base resin host. The ratio of the weight of the conductive powder(s), conductive fiber(s), or a combination of conductive powder and conductive fibers to the weight of the base resin host is between about 0.20 and 0.40. The micron conductive powders are formed from non-metals, such as carbon, graphite, that may also be metallic plated, or the like, or from metals such as stainless steel, nickel, copper, silver, that may also be metallic plated, or the like, or from a combination of non-metal, plated, or in combination with, metal powders. The micron conductor fibers preferably are of nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like. The conductive loaded resin-based lighting devices can be formed using methods such as injection molding compression molding or extrusion. The conductive loaded resin-based material used to form the lighting devices can also be in the form of a thin flexible woven fabric that can readily be cut to the desired shape.
Abstract:
Low cost antennas and electromagnetic absorbing parts formed of a conductive loaded resin-based material. The conductive loaded resin-based material comprises conductive fibers, conductive powders, or in combination thereof in a resin base host wherein the ratio of the weight of the conductor fibers, conductor powders, or combination of conductor fibers and conductor powders to the weight of the base resin host is between about 0.20 and 0.40. The conductive fibers or conductive powders can be stainless steel, nickel, copper, silver, carbon, graphite, plated fibers or particles, or the like. The antenna elements can be formed using methods such as injection molding or extrusion. Virtually any antenna, ground planes, or shielding packages fabricated by conventional means of metal can be fabricated using the conductive loaded resin-based materials. The conductive loaded resin-based material used to form the antenna elements, EMF absorbing elements, or ground planes can be in the form of a thin flexible material, which can be readily cut to the desired shape.
Abstract:
The present invention provides a method of making an electronic parts mounting board, comprising the steps of: punching a conductive sheet to form a circuit pattern portion and through-holes in which electronic parts are to be mounted by use of a progressive die device while at the same time partially folding said circuit pattern portion to form connection terminal portions by use of said same progressive die device; and molding an insulative resin over the whole opposite sides of said circuit pattern portion and the base ends of the terminal portions including the folded parts thereof to form an integral covering portion having openings for electrically connecting said circuit pattern portion to electronic parts to be mounted thereon.
Abstract:
A high impedance surface and a method of making same. The surface includes a molded structure having a repeating pattern of holes therein and a repeating pattern of sidewall surfaces, the holes penetrating the structure between first and second major surfaces thereof and the sidewall surfaces joining the first major surface. A metal layer is put on said molded structure, the metal layer being in the holes, covering at least a portion of the second major surface, covering the sidewalls and portions of the first major surface to interconnect the sidewalls with other sidewalls via the metal layer on the second major surface and in the holes.