Abstract:
This wicking apparatus includes a liquid reservoir, a wick holder, and a wick.The wick holder has a top part for fitting on the reservoir neck and a bottom part for insertion into the reservoir opening, the top part being plate-formed with a central opening, and with two peripheral projections that are spaced apart and that extend downward from the plate towards the reservoir body, projections for contacting inner and outer walls of the reservoir neck, and a second projection for contacting an outer wall of the reservoir neck, the bottom part having wick supporting arms that extend downwards and have flexible end portions projecting inwardly towards the centre of the reservoir opening. The wick is step-shaped with a larger diameter part, and a smaller diameter part: the interface between them defines a shoulder which is supported and held in place by the flexible end portions of the supporting arms.
Abstract:
An ultrasound apparatus capable of mixing and/or atomizing fluids is disclosed. The apparatus includes a horn having an internal chamber, containing at least one free member, through which fluids to be atomized and/or mixed flow. Connected to the horn's proximal end, a transducer powered by a generator induces ultrasonic vibrations within the horn. Traveling down the horn from the transducer, the ultrasonic vibrations induce the release of ultrasonic energy into the fluids to be atomized and/or mixed as they travel through the internal chamber. As the ultrasonic vibrations travel through the chamber, the fluids within the chamber are agitated and/or begin to cavitate, while the free member moves about the chamber, thereby mixing the fluids. Upon reaching the front wall of the chamber, the ultrasonic vibrations echo off the front wall and pass through the fluids within the chamber a second time, further mixing the fluids.
Abstract:
A piezoelectric device, including the following on a substrate in the order listed below: a lower electrode, a piezoelectric film which contains a Pb containing perovskite oxide represented by a general expression (P) below, and an upper electrode, in which the piezoelectric film has a layer of pyrochlore oxide on the surface facing the lower electrode, and the average layer thickness of the pyrochlore oxide layer is not greater than 20 nm. AaBbO3 (P) where, A: at least one type of A-site element containing Pb as a major component, B: at least one type of B-site element selected from the group consisting of Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Sc, Co, Cu, In, Sn, Ga, Zn, Cd, Fe, and Ni, and O: an oxygen element.
Abstract:
A fluid ejection apparatus ejecting fluid from an ejection port, includes: a suction port provided at a position apart from the ejection port and applied with a negative pressure; and a fluid channel provided between the vicinity of the ejection port and the suction port, and configured to suck the fluid in the vicinity of the ejection port by the surface tension of the fluid and move the same toward the suction port.
Abstract:
An injector including a nozzle that includes an opening and a seat, a needle movably mounted in the nozzle and having an end defining a valve in a contact area with the seat, a mechanism for vibrating the valve, a first acoustic-impedance breaking area at a first distance from the valve along the nozzle, and another first acoustic-impedance breaking area at a second distance from the valve along the needle. Each of the first and second distances is such that the respective propagation time of acoustic waves along the distance is: Ti=ni*[ζ/2], where ni is a positive integer coefficient different from zero with i=3 for the first distance and i=4 for the second distance, ζ being a period of the vibrations.
Abstract:
A method of ionizing a liquid is disclosed herein. The method includes the steps of dispensing an electrically conductive liquid onto an electrically conductive membrane so as to form a liquid film on the surface of the membrane, applying an electrical charge to the liquid film on the membrane, generating ultrasonic waves to vibrate the membrane so as to induce capillary waves in the liquid film, and electrostatically attracting the electrically charged crests in the capillary waves so that electrically charged droplets are extracted from the capillary waves and accelerated therefrom for emission. The method is generally utile in various applications including, for example, spacecraft propulsion, paint spray techniques, semiconductor fabrication, biomedical processes, and the like. In addition to the above-described method, an electrostatic colloid thruster for implementing the method is disclosed herein as well.
Abstract:
A jet device is provided in the present invention. The jet device includes a chamber having a nozzle and a lateral channel, wherein the lateral channel is disposed along the outer side of a first side of the chamber, the nozzle is disposed at one end of the lateral channel and the chamber is connected with the lateral channel via the nozzle which is connected with the external space, wherein the fluid is filled in the chamber, the nozzle and the later channel and an arc and a block are disposed at the connection of the nozzle and the lateral channel; and a piston disposed at a second side of the chamber.
Abstract:
Dispensers and refills for volatile liquids, such as fragrances, are disclosed. Dispensers and refills in combination with dispensers according to the present invention may comprise a volatile liquid and a housing. In certain embodiments, the volatile liquid of the present invention has a predetermined evaporation rate, measured and calculated by the method described herein. In other embodiments, the volatile liquid exhibits a predefined relative evaporation rate. In addition to the housing, the present invention includes optional components, such as a motorized fan and/or a wick, to facilitate release of the volatile liquid into the atmosphere.
Abstract:
A metering device for dispensing a medium to an environment is provided. The metering device includes a housing, a shallow metering chamber within the housing which is of planar design and is essentially closed off from the environment by wall sections, a first media inlet which is connected to the metering chamber and can be connected to a media reservoir, and a vibration mechanism which is arranged in such a manner that vibrations generated by the vibration mechanism cause pulsing changes in volume of an internal volume of the metering chamber. A wall section which is designed as an outlet wall section has metering openings so that the metering chamber is connected to the environment. The vibration mechanism forms a vibration wall section so that the metering chamber is delimited.
Abstract:
The liquid repellent structure includes a support, and a honeycomb-patterned film and a coating film on the honeycomb-patterned film or a liquid repellent film. The method of producing the structure applies a solution of an organic compound in an organic solvent onto the support, places the support in an atmosphere containing water vapor to form water droplets on a surface of the solution film, evaporates the organic solvent and the droplets to form the honeycomb-patterned film, and forms the coating film made of a fluorine-containing material on a surface of the honeycomb-patterned film or etches the honeycomb-patterned film to form a second honeycomb-patterned film. The liquid ejection head includes an ejection substrate having the liquid repellent structure. The protective film includes a support base and the liquid repellent structure.