Abstract:
A system is disclosed for providing feedback regarding chest compressions in CPR comprising a measuring unit, a processing unit and a display unit, where the measuring unit comprises a depth measuring device, a force measuring device, or both. The processing unit comprises a depth signal device and/or a force signal device and a threshold device. The processing unit is adapted to output a signal depending on the values of depth and/or force signals with respect to the thresholds. The display unit comprises at least one indicator and is adapted to activate the indicators based on the output from the processing device. The system thus measures and processes chest compressions and provides feedback to the user with respect to the characteristics of the compressions.
Abstract:
Safety mechanisms for compression belt cartridges used in chest compression devices. The safety mechanisms include a breakable link, liner socks, belt guards and a rapid-release connector. The breakable link ensures that unsafe belt tension will not occur. The liner socks protect the patient from friction and contain the breakable link. The belt guards protect foreign objects from entering the belt drive platform. The rapid-release connector allows the belt to be removed safely even during compressions.
Abstract:
The present invention relates to the field of medical devices. More particularly, the present invention relates to therapeutic walkers and devices for preventing tipping of a walker during use. The inventive anti-tipping device can be retrofitted to existing walkers and has at least three or more degrees of freedom relative to the walker along which the anti-tip device can be adjusted to provide for a walker with customizable safety supports.
Abstract:
A system for performing chest compression and abdominal compression for Cardiopulmonary Resuscitation. The system includes a motor and gearbox including a system of clutches and brakes which allow for controlling and limiting the movement of compressing mechanisms operating on the chest and the abdomen of a patient.
Abstract:
A system and method for control of energy application to a target location based on a measured localized harmonic motion is disclosed. The system includes a first energy source configured to deliver a beam of energy to a subject to induce mechanical vibration of a desired region, a second energy source configured to deliver a second beam of energy into the desired region, and a receiver configured to receive echo signals from the desired region indicative of reflected energy from the second energy source. The system also includes a computer programmed to analyze at least one of amplitude, phase, and frequency of the vibration of the desired region indicated by the received echo signals, monitor the amplitude, phase, and/or frequency of the vibration in the desired region during application of the beam of energy, detect a change in the amplitude, phase, and/or frequency of the vibration in the desired region and, if the change exceeds a pre-determined size and rate, generate an alert.
Abstract:
A timer and alert module for an emergency eyewash station is disclosed. The module includes a housing; a control circuit having a timing cycle contained within the housing; a speaker electrically connected to the control circuit; a switch configured and arranged to disable the control circuit; and a sensor configured and arranged to trigger the control circuit to start the timing cycle. The control circuit selectively activates the speaker periodically during the timing cycle.
Abstract:
A system is disclosed for providing feedback regarding chest compressions in CPR comprises a measuring unit, a processing unit and a display unit, where the measuring unit comprises a depth measuring device, a force measuring device, or both. The processing unit comprises a depth signal device and/or a force signal device and a threshold device. The processing unit is adapted to output a signal depending on the values of depth and/or force signals with respect to the thresholds. The display unit comprises at least one indicator and is adapted to activate the indicators based on the output from the processing device. The system thus measures and processes chest compressions and provide feedback to the user with respect to the characteristics of the compressions.
Abstract:
A system is disclosed for providing feedback regarding chest compressions in CPR comprises a measuring unit, a processing unit and a display unit, where the measuring unit comprises a depth measuring device, a force measuring device, or both. The processing unit comprises a depth signal device and/or a force signal device and a threshold device. The processing unit is structured to output a signal depending on the values of depth and/or force signals with respect to the thresholds. The display unit comprises at least one indicator and is structured to activate the indicators based on the output from the processing device. The system thus measures and processes chest compressions and provide feedback to the user with respect to the characteristics of the compressions.
Abstract:
The invention relates to a cardiopulmonary resuscitation apparatus comprising: a device having a piston for compressing the sternum; and a device for thoracic constriction having a chest band for fastening and constricting the chest when the piston compresses a patient's chest, characterized in that the length of the chest band can be adjusted according to the size of the patient's chest. The apparatus further includes a protection pad to be attached to the chest when the chest band is tightened, thereby easily adjusting the length of the chest band according to the size of the patient's chest and protecting the patient's chest when it is compressed.
Abstract:
The invention is an apparatus for increasing intrathoracic pressure for resuscitating cardiac arrest patients. The apparatus comprises a flexible, substantially inelastic belt wrapped around the patient's chest and attached to a force converter. The force converter converts a downwardly directed force into a chestward resultant, which depresses the sternum, and two belt tightening resultants. The force converter comprises a pair of arm assemblies, each having a pair of spaced arms, which are pivotably mounted to a base. The base is positioned near the patient's sternum and the ends of the belt attach to one end of each arm assembly. The opposite, handle ends of the arm assemblies are depressed toward the chest causing tightening of the belt and compression of the chest cavity.