Abstract:
An object of the present invention is to provide an artificial quartz member inhibited from suffering the decrease in transmittance in a laser light wavelength region which is caused by long-term irradiation with a laser light having a wavelength of 200 nm or shorter; and a process for producing the artificial quartz member. The invention provides an artificial quartz member for use as an optical element to be irradiated with a laser light having a wavelength of 200 nm or shorter, having an aluminum content of 200 ppb or lower.
Abstract:
A process for the production of a self-supporting glass film is described. The method includes the steps of preparing a mixture containing a colloidal silica sol, at least one alkanolamine organic additive and an organic binder; coating the mixture onto a base material; drying the coated mixture to form a precursor film on the base material; releasing the precursor film from the base material; and firing the released precursor film to form a self-supporting glass film. Self-supporting glass films produced by the disclosed process are also described.
Abstract:
Subjects for the invention are to obtain a quartz powder having a high purity and high quality and a process for producing the same and to obtain a glass molding formed by melting and molding the powder and extremely reduced in bubble inclusion.The invention provides a quartz powder, preferably a synthetic quartz powder obtained by the sol-gel method, which, upon heating from room temperature to 1,700° C., generates gases in which the amount of CO is 300 nl/g or smaller and the amount of CO2 is 30 nl/g or smaller.
Abstract:
A silica glass member for semiconductor in which each concentration of Fe, Cu, Cr and Ni is 5 ppb or less and the concentration of an OH group is 30 ppm or less and which has a viscosity of 1013.0 poise or more at 1200° C. is provided as a silica glass member for semiconductor having high heat-resistance and higher purity.
Abstract:
Subjects for the invention are to obtain a quartz powder having a high purity and high quality and a process for producing the same and to obtain a glass molding formed by melting and molding the powder and extremely reduced in bubble inclusion.The invention provides a quartz powder, preferably a synthetic quartz powder obtained by the sol-gel method, which, upon heating from room temperature to 1,700° C., generates gases in which the amount of CO is 300 nl/g or smaller and the amount of CO2 is 30 nl/g or smaller.
Abstract:
A method for producing a quartz glass material with high resistance to radiation-induced density modifications when exposed to ultraviolet radiation at about 193 nm and energy densities of the order of the working energy densities of optical systems for microlithography, in which the peroxy defect level in the quartz glass material is minimized. In this way the creation of closely neighbored hydroxyl groups can be inhibited, which have been identified as an essential cause for radiation induced density reduction of the quartz glass material.
Abstract:
Subjects for the invention are to obtain a quartz powder having a high purity and high quality and a process for producing the same and to obtain a glass molding formed by melting and molding the powder and extremely reduced in bubble inclusion. The invention provides a quartz powder, preferably a synthetic quartz powder obtained by the sol-gel method, which, upon heating from room temperature to 1,700null C., generates gases in which the amount of CO is 300 nl/g or smaller and the amount of CO2 is 30 nl/g or smaller.
Abstract:
A silica glass member for semiconductor in which each concentration of Fe, Cu, Cr and Ni is 5 ppb or less and the concentration of an OH group is 30 ppm or less and which has a viscosity of 1013.0 poise or more at 1200null C. is provided as a silica glass member for semiconductor having high heat-resistance and higher purity.
Abstract:
This invention resides in a process for making silica articles having few or no visible bubbles by sintering silica gels derived from a sol-gel process. The process incorporates control of pH during hydroxylation and gelation, as well as chlorination at temperatures previously considered unsuitable. The process optionally incorporates addition of dispersant to the silica solution.
Abstract:
The invention relates to fused silica having low compaction under high energy irradiation, particularly adaptable for use in photolithography applications.