Abstract:
Provided is a glass fabric formed by weaving warp and weft glass yarns comprising a plurality of glass filaments, wherein the surface of the glass fabric is subjected to surface treatment with a surface treatment agent, and the total carbon extraction amount when the glass fabric is subjected to extraction with methanol is greater than 0 and not more than 0.25%.
Abstract:
A porous glass base material manufacturing system that does not require the manufacturing apparatus and building to be hazardous material-compatible and that can provide a stable supply of raw materials, even when organic siloxane raw material is used as raw materials to produce silica fine particles includes a raw material supplying apparatus and a porous glass base material manufacturing apparatus. The raw material supplying apparatus includes: a raw material tank in which organic siloxane raw material in a liquid state is stored and the remaining space is filled with inert gas; a liquid feed pump to pump the organic siloxane raw material from the raw material tank; a circulating piping and a branch piping through which the raw material pumped is passed; a liquid mass flow controller that controls the flow rate of organic siloxane raw material passed through the branch piping to a predetermined flow rate; and a vaporizer.
Abstract:
The present disclosure provides a method for fabrication of a glass preform. The method includes production of soot particles in a combustion chamber using a precursor material. The heating of the precursor material produces the soot particles along with one or more impurities. In addition, the method includes agglomeration of the soot particles. Further, the method includes separation of the soot particles from the one or more impurities. Also, the separation of the soot particles is performed in a cyclone separator. Furthermore, the method includes collection of the soot particles. Also, the soot particles are compacted with facilitation of a preform compaction chamber. Also, the compacted preform is sintered with facilitation of a sintering furnace. The compaction of the soot particles followed by sintering results in formation of the glass preform.
Abstract:
A Photonic Crystal Fiber (PCF) a method of its production and a supercontinuum light source comprising such PCF. The PCF has a longitudinal axis and includes a core extending along the length of said longitudinal axis and a cladding region surrounding the core. At least the cladding region includes a plurality of microstructures in the form of inclusions extending along the longitudinal axis of the PCF in at least a microstructured length section. In at least a degradation resistant length section of the microstructured length section the PCF includes hydrogen and/or deuterium. In at least the degradation resistant length section the PCF further includes a main coating surrounding the cladding region, which main coating is hermetic for the hydrogen and/or deuterium at a temperature below Th, wherein Th is at least about 50° C., preferably 50° C.
Abstract:
Alkali-free glasses are disclosed having (in weight %) 50≦SiO2≦80%, 2≦Al2O3≦17%, 8≦B2O3≦36%, and greater than or equal to 2% and less than or equal to 25% of at least one of CaO, MgO, BaO, SrO or ZnO. The alkali-free glasses can have a surface layer with greater than 0.2 weight % N. Such alkali-free glasses are achieved by nitriding processes and exhibit increased strength, scratch resistance and chemical durability.
Abstract:
Embodiments of the invention relate to a hydrogen-resistant optical fiber with a core having a central axis. The core may include only silica, or only silica and fluorine, while a cladding region surrounding the core may be made of silica and fluorine, along with at least one of germanium, phosphorus, and titanium.
Abstract:
A system and method for making a thin sintered silica sheet is provided. The method includes providing a soot deposition surface and forming a glass soot sheet by delivering a stream of glass soot particles from a soot generating device to the soot deposition surface. The method includes providing a sintering laser positioned to direct a laser beam onto the soot sheet and forming a sintered glass sheet from the glass soot sheet by delivering a laser beam from the sintering laser onto the glass soot sheet. The sintered glass sheet formed by the laser sintering system or method is thin, has low surfaces roughness and/or low contaminant levels.
Abstract:
A process for the production of a self-supporting glass film is described. The method includes the steps of preparing a mixture containing a colloidal silica sol, at least one alkanolamine organic additive and an organic binder; coating the mixture onto a base material; drying the coated mixture to form a precursor film on the base material; releasing the precursor film from the base material; and firing the released precursor film to form a self-supporting glass film. Self-supporting glass films produced by the disclosed process are also described.
Abstract:
The synthetic amorphous silica powder of the present invention is characterized in that it comprises a synthetic amorphous silica powder obtained by applying a spheroidizing treatment to a silica powder, and by subsequently cleaning and drying it so that the synthetic amorphous silica powder has an average particle diameter D50 of 10 to 2,000 μm; wherein the synthetic amorphous silica powder has: a quotient of 1.00 to 1.35 obtained by dividing a BET specific surface area of the powder by a theoretical specific surface area calculated from the average particle diameter D50; a real density of 2.10 to 2.20 g/cm3; an intra-particulate porosity of 0 to 0.05; a circularity of 0.75 to 1.00; and a spheroidization ratio of 0.55 to 1.00.
Abstract:
A method for producing a highly pure quartz granulate is provided by means of which a highly pure quartz granulate can be produced from a natural quartz raw material via the steps of: washing a natural quartz raw material in the form of coarsely crushed pieces; mechanical comminution of the pre-crushed pieces; further comminution of the pieces to a grain size of less than 0.5 mm via high-voltage discharge pulses; flotation for separating out foreign minerals; and chemical treatment for further depletion of foreign elements.