Abstract:
The barrier properties of a water soluble gas barrier material are improved if the material is blended with a nanoparticle calcium carbonate having a size of from 10 to 250 nanometers. The barrier material is on a substrate to provide a substrate with gas barrier properties. A layer of heat sealable material may be applied to the exposed surface of the barrier material. A method for making the barrier coated substrate is disclosed.
Abstract:
It is intended to provide a biodegradable polyester resin composition which is excellent in gas barrier properties, mechanical strength and heat resistance and has Theological characteristics advantageously usable in molding a foamed article, etc., a process for producing the same, and a foamed article and a molded article using the same. The biodegradable polyester resin composition contains 100 parts by mass of a biodegradable polyester resin containing 59% mole or more of a hydroxycarboxylic acid unit, 0.01 to 10 parts by mass of a (meth)acrylic acid ester compound and 0.05 to 20 parts by mass of a layered silicate.
Abstract:
The present invention has its object to provide a coating material with a gas-barrier property which can give a very transparent packaging material with a satisfactory gas-barrier property when it has a thin gas-barrier layer and, when it has a gas-barrier layer with an ordinary thickness, can give a packaging material with a higher gas-barrier property, a process for producing such coating material with a gas-barrier property, and a packaging container with a high gas-barrier level obtained by coating with such coating material with a gas-barrier property.The present invention provides a coating material composition with a gas-barrier property which comprises, as essential components, an ethylene-vinyl alcohol copolymer (A) obtained by saponifying an ethylene-vinyl acetate copolymer, an inorganic layered compound (B) and a solvent, wherein the total amount of (A) and (B) is 1 to 30% by mass and the mass ratio (A)/(B) is (30/70) to (50/50).
Abstract:
In a gas barrier laminate film comprising a base material film containing an inorganic compound and at least one set of inorganic layer and organic layer formed on the base material film, the base material film is formed with a resin having a glass transition temperature of 25° C. or higher. A gas barrier laminate film that has superior durability, heat resistance and gas barrier performance, shows a small difference in coefficient of linear expansion relative to a contiguous layer and can maintain superior gas barrier property even if it is bent is provided.
Abstract:
This invention relates to a polyester/polyamide blend having an excellent gas barrier property. More particularly, the present invention relates to combinations of a polyethylene terephthalate polymer and a polyamide polymer having an excellent gas barrier property and short oxygen scavenging induction periods, where the polyamide polymer has a C:A terminal group concentration ratio of 2:1 or more and a C+A terminal group concentration of at least 0.17 meq/g of polyamide polymer, wherein C represents a cumulative total of a terminal carboxyl group concentration and a terminal hydrocarbyl group concentration expressed in meq/g of polyamide, and A represents a terminal amine group concentration expressed in meq/g of polyamide.
Abstract:
A water-borne gas barrier coating composition for polymeric films and shaped containers, including a two-layer coating system with a laminar layer mineral in the gas barrier layer, which is particularly well suit for spray application to biaxially oriented injection stretch blow molded PET bottles for carbonated beverages and beer.
Abstract:
A composition well suited to forming gas barrier layers in elastomeric articles is described. The barrier layer may be incorporated into, for instance, inflatable articles that are intended to contain a gas, such as air, under pressure. For example, in one embodiment, the barrier layer may be incorporated into a tire for preventing oxygen or other gaseous components from migrating through the tire. In general, the barrier layer is made from an elastomer that is combined with permeability reducing particles, such as a silicate, and a terpene hydrocarbon resin having a relatively high glass transition temperature. The terpene hydrocarbon resin can improve the processability of the composition and, in one embodiment, can even serve to improve the permeability characteristics of the barrier layer.
Abstract:
A container comprising a polyester composition with enhanced carbon dioxide and oxygen barrier properties is provided. The polyester composition comprises a polyester and a purine derivative. In a particular embodiment, the purine derivative comprises a purine dione, such as caffeine.
Abstract:
It is intended to provide a biodegradable polyester resin composition which is excellent in gas barrier properties, mechanical strength and heat resistance and has Theological characteristics advantageously usable in molding a foamed article, etc., a process for producing the same, and a foamed article and a molded article using the same. The biodegradable polyester resin composition contains 100 parts by mass of a biodegradable polyester resin containing 59% mole or more of a hydroxycarboxylic acid unit, 0.01 to 10 parts by mass of a (meth)acrylic acid ester compound and 0.05 to 20 parts by mass of a layered silicate.
Abstract:
The barrier properties of a water soluble gas barrier material are improved if the material is blended with a nanoparticle calcium carbonate having a size of from 10 to 250 nanometers. The barrier material is on a substrate to provide a substrate with gas barrier properties. A layer of heat sealable material may be applied to the exposed surface of the barrier material. A method for making the barrier coated substrate is disclosed.